Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
nè mình gợi ý cho gọi a= 1-1/2-1/2^2-1/2^3-......... ......1/2^2014 1 / 2^2>1 / 2.3 1/2^3>1/3.4 ................ 1/2^2014<1/2014.2015 nen 1-1/2-1/2^2-1/2^3-.........................1/^2014>1-1/1.2-1/2.3-1/3.4-........................1/2014.2015 a<1-[1-1/2015] a<1-2014/2015 a<1/2015
a) \(A=\frac{1}{5^2}+\frac{1}{5^3}+...+\frac{1}{5^{2019}}\)
\(5A=\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{2018}}\)
\(4A=5A-A=\frac{1}{5}-\frac{1}{5^{2019}}\)
\(A=\frac{1}{20}-\frac{1}{4.5^{2019}}< \frac{1}{20}< \frac{1}{2}\)
b) Đề có sai không mà đằng cuối lại là \(\frac{1}{4^2}\)lặp lại lần nữa.
c) \(C=\frac{1}{2}-\frac{1}{4}+\frac{1}{8}-\frac{1}{16}+\frac{1}{32}-\frac{1}{64}\)
\(2C=1-\frac{1}{2}+\frac{1}{4}-\frac{1}{8}+\frac{1}{16}-\frac{1}{32}\)
\(3C=2C+C=1-\frac{1}{64}< 1\)
\(C< \frac{1}{3}\)
d) Xem lại đề nữa đi e, nếu trừ hai vế cho \(\frac{1}{3}\)thì vế trái > 0 > vế phải rồi
e) \(\frac{1}{41}+\frac{1}{42}+...+\frac{1}{50}>\frac{1}{50}+\frac{1}{50}+...+\frac{1}{50}\)(10 số hạng)
\(=\frac{10}{50}=\frac{1}{5}\)
Tương tự: \(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{60}>\frac{1}{6}\)
\(\frac{1}{61}+\frac{1}{62}+...+\frac{1}{70}>\frac{1}{7}\)
\(\frac{1}{71}+\frac{1}{72}+...+\frac{1}{80}>\frac{1}{8}\)
\(\frac{1}{41}+\frac{1}{42}+...+\frac{1}{80}>\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}=\frac{533}{840}>\frac{490}{840}=\frac{7}{12}\)
Đặt \(A=1-\frac{1}{2}-\frac{1}{2^2}-\frac{1}{2^3}-...-\frac{1}{2^{2014}}\)(1)
=>\(\frac{1}{2}.A=\frac{1}{2}-\frac{1}{2^2}-\frac{1}{2^3}-\frac{1}{2^4}-...-\frac{1}{2^{2015}}\)(2)
Trừ (1) cho (2) theo vế ta được: \(A-\frac{1}{2}.A=1-\frac{1}{2}-\frac{1}{2}+\frac{1}{2^{2015}}\)
(chú ý quy tắc bỏ dấu ngoặc)
hay \(\frac{1}{2}.A=\frac{1}{2^{2015}}\)
=>\(A=\frac{1}{2^{2014}}\)
Vì 0 < 22014 < 22015 => \(\frac{1}{2^{2014}}>\frac{1}{2^{2015}}\) => điều phải chứng minh.
\(\frac{1}{7}\cdot\frac{2}{9}+\frac{1}{9}\cdot\frac{3}{7}+\frac{1}{7}\cdot\frac{4}{9}\)
\(=\frac{2}{7}\cdot\frac{1}{9}+\frac{1}{9}\cdot\frac{3}{7}+\frac{4}{7}\cdot\frac{1}{9}\)
\(=\frac{1}{9}\left(\frac{2}{7}+\frac{3}{7}+\frac{4}{7}\right)\)
\(=\frac{1}{9}\cdot\frac{9}{7}=\frac{1}{7}\)
\(\frac{1}{7}.\frac{2}{9}+\frac{1}{9}.\frac{3}{7}+\frac{1}{7}.\frac{4}{9}\)
\(=\frac{2}{7}.\frac{1}{9}+\frac{1}{9}.\frac{3}{7}+\frac{4}{7}.\frac{1}{9}\)
\(=\frac{1}{9}.\left(\frac{2}{7}+\frac{3}{7}+\frac{4}{7}\right)\)
\(=\frac{1}{9}.\frac{9}{7}\)
\(=\frac{1}{7}\)
\(\frac{1}{1}.\frac{1}{2}+\frac{1}{2}.\frac{1}{3}+\frac{1}{3}.\frac{1}{4}+\frac{1}{4}.\frac{1}{5}+\frac{1}{5}.\frac{1}{6}=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}\)
\(=1-\frac{1}{6}=\frac{5}{6}\)
\(\frac{1}{1}.\frac{1}{2}+\frac{1}{2}.\frac{1}{3}+\frac{1}{3}.\frac{3}{4}+\frac{1}{4}.\frac{1}{5}+\frac{1}{5}.\frac{1}{6}\)
\(=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}\)
\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}\)
\(=\frac{1}{1}-\frac{1}{6}\)
\(=\frac{5}{6}\)