K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 2 2017

nè mình gợi ý cho       gọi a= 1-1/2-1/2^2-1/2^3-......... ......1/2^2014                                                                                                                    1 / 2^2>1 / 2.3                                                                                                                                                                                  1/2^3>1/3.4                                                                                                                                                                                       ................                                                                                                                                                                                      1/2^2014<1/2014.2015                                                                                                                                                                       nen 1-1/2-1/2^2-1/2^3-.........................1/^2014>1-1/1.2-1/2.3-1/3.4-........................1/2014.2015                                                            a<1-[1-1/2015]  a<1-2014/2015    a<1/2015

13 tháng 5 2020

a) \(A=\frac{1}{5^2}+\frac{1}{5^3}+...+\frac{1}{5^{2019}}\)

\(5A=\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{2018}}\)

\(4A=5A-A=\frac{1}{5}-\frac{1}{5^{2019}}\)

\(A=\frac{1}{20}-\frac{1}{4.5^{2019}}< \frac{1}{20}< \frac{1}{2}\)

b)  Đề có sai không mà đằng cuối lại là \(\frac{1}{4^2}\)lặp lại lần nữa.
c) \(C=\frac{1}{2}-\frac{1}{4}+\frac{1}{8}-\frac{1}{16}+\frac{1}{32}-\frac{1}{64}\)

\(2C=1-\frac{1}{2}+\frac{1}{4}-\frac{1}{8}+\frac{1}{16}-\frac{1}{32}\)

\(3C=2C+C=1-\frac{1}{64}< 1\)

\(C< \frac{1}{3}\)

d) Xem lại đề nữa đi e, nếu trừ hai vế cho \(\frac{1}{3}\)thì vế trái > 0 > vế phải rồi
e)  \(\frac{1}{41}+\frac{1}{42}+...+\frac{1}{50}>\frac{1}{50}+\frac{1}{50}+...+\frac{1}{50}\)(10 số hạng)
                                                    \(=\frac{10}{50}=\frac{1}{5}\)

Tương tự: \(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{60}>\frac{1}{6}\)

\(\frac{1}{61}+\frac{1}{62}+...+\frac{1}{70}>\frac{1}{7}\)

\(\frac{1}{71}+\frac{1}{72}+...+\frac{1}{80}>\frac{1}{8}\)

\(\frac{1}{41}+\frac{1}{42}+...+\frac{1}{80}>\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}=\frac{533}{840}>\frac{490}{840}=\frac{7}{12}\)

14 tháng 2 2017

Đặt \(A=1-\frac{1}{2}-\frac{1}{2^2}-\frac{1}{2^3}-...-\frac{1}{2^{2014}}\)(1)

=>\(\frac{1}{2}.A=\frac{1}{2}-\frac{1}{2^2}-\frac{1}{2^3}-\frac{1}{2^4}-...-\frac{1}{2^{2015}}\)(2)

Trừ (1) cho (2) theo vế ta được: \(A-\frac{1}{2}.A=1-\frac{1}{2}-\frac{1}{2}+\frac{1}{2^{2015}}\)

(chú ý quy tắc bỏ dấu ngoặc)

hay \(\frac{1}{2}.A=\frac{1}{2^{2015}}\)

=>\(A=\frac{1}{2^{2014}}\)

Vì 0 < 22014 < 22015 => \(\frac{1}{2^{2014}}>\frac{1}{2^{2015}}\) => điều phải chứng minh.

24 tháng 3 2017

sory về hoàn cảnh của bạn. Hu Hu. Tớ giận mình đã ko giúp được bạn.

24 tháng 3 2017

mik chỉ giải được bài 1 với bài 2 thôi!!! 

7 tháng 6 2020

\(\frac{1}{7}\cdot\frac{2}{9}+\frac{1}{9}\cdot\frac{3}{7}+\frac{1}{7}\cdot\frac{4}{9}\)

\(=\frac{2}{7}\cdot\frac{1}{9}+\frac{1}{9}\cdot\frac{3}{7}+\frac{4}{7}\cdot\frac{1}{9}\)

\(=\frac{1}{9}\left(\frac{2}{7}+\frac{3}{7}+\frac{4}{7}\right)\)

\(=\frac{1}{9}\cdot\frac{9}{7}=\frac{1}{7}\)

7 tháng 6 2020

\(\frac{1}{7}.\frac{2}{9}+\frac{1}{9}.\frac{3}{7}+\frac{1}{7}.\frac{4}{9}\)

\(=\frac{2}{7}.\frac{1}{9}+\frac{1}{9}.\frac{3}{7}+\frac{4}{7}.\frac{1}{9}\)

\(=\frac{1}{9}.\left(\frac{2}{7}+\frac{3}{7}+\frac{4}{7}\right)\)

\(=\frac{1}{9}.\frac{9}{7}\)

\(=\frac{1}{7}\)

16 tháng 8 2016

\(\frac{1}{1}.\frac{1}{2}+\frac{1}{2}.\frac{1}{3}+\frac{1}{3}.\frac{1}{4}+\frac{1}{4}.\frac{1}{5}+\frac{1}{5}.\frac{1}{6}=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}\)

\(=1-\frac{1}{6}=\frac{5}{6}\)

16 tháng 8 2016

\(\frac{1}{1}.\frac{1}{2}+\frac{1}{2}.\frac{1}{3}+\frac{1}{3}.\frac{3}{4}+\frac{1}{4}.\frac{1}{5}+\frac{1}{5}.\frac{1}{6}\)

\(=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}\)

\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}\)

\(=\frac{1}{1}-\frac{1}{6}\)

\(=\frac{5}{6}\)