Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mọi người cứ làm từng câu một, vậy tui làm cả 2 câu nhé!
Câu 1:
p là số nguyên tố lớn hơn 3 => p=3k+1 hoặc p=3k+2
Nếu p=3k+2
=>p+4=3k+2+4=3k+6 (loại vì p+4 cũng là số nguyên tố)
=>p=3k+1
=>p+8=3k+1+8=3k+9 là hợp số (đpcm)
Câu 2:
Ta có: abcabc=abc.1001=abc.7.11.13
Vì 7;11;13 là 3 số nguyên tố nên abcabc chia hết cho ít nhất 3 số nguyên tố (đpcm)
Giả sử p là 1 số nguyên tố >3, do p không chia hết cho 3 nên p có dạng 3k + 1 hoặc 3k + 2 nhưng do p +4 là số nguyên tố nên p không thể có dạng 3k + 2 vậy p có dạng 3k +1. Vậy p + 8 = 3k + 9 chia hết cho 3 nên nó là hợp số.
ta có:abcabc=abc.1001
mà 1001 chia hết cho 7;11;13(là số nguyên tố)
nên abc.1001 chia hết cho 7;11;13(là số nguyên tố)
suy ra số tự nhiên abcabc chia hết cho ít nhất 3 số nguyên tố
Ta có: abcabc = 1000abc + abc = 1001.abc
Vì 1001 = 7.11.13 (là tích của 3 số nguyên tố)
=> abcabc luôn chia hết cho 3 số nguyên tố là 7; 11 và 13
k mk nha!^-^
abcabc=abc*1001=abc*7*11*13
Vì 7;11;13 đều là 3 số nguyên tố nên số có dạng abcabc chia hết ít nhất cho 3 số nguyên tố
abcabc=abcx1001=abcx7x11x13
7, 11, 13 là 3 SNT nên chắc chắn abcabc chia hết cho ít nhất 3 SNT là 7,11,13
k nha bạn
ta có abcabc= abc.1001= abc.7.11.13
suy ra abc chia hết cho 7,11,13 là các số nguyên tố
Ta thấy: abcabc = abc.1001
Mà 1001 chia hết cho 7;11;13
=> abcabc chia hết cho 7;11;13
7;11;13 đều là số nguyên tố
=> abcabc chia hết cho ít nhất 3 số nguyên tố (7;11 và 13)
Ta có : abcabc = 1001 . abc = 7 . 11 . 13 . abc
Mà 7, 11, 13 là số nguyên tố => 7 . 11 . 13 .abc chia hết cho 3 số nguyên tố
Hay abcabc chia hết cho ít nhất 3 số nguyên tố
Ta có : abcabc = abc * 1001
=> abcabc = abc *7 *11*13
Mà 7;11;13 là số nguyên tố
=> abcabc chia hết cho ít nhất 3 số nguyên tố (đpcm)
a có:abcabc=abc.1001
mà 1001 chia hết cho 7;11;13(là số nguyên tố)
nên abc.1001 chia hết cho 7;11;13(là số nguyên tố)
suy ra số tự nhiên abcabc chia hết cho ít nhất 3 số nguyên tố
abcabc = abc . 1001
mà 1001 chia hết cho 7;11;13(là số nguyên)
nên abc.1001 chia hết cho 7;11;13(là số nguyên)
suy ra số tự nhiên abcabc chia hết cho ít nhất 3 số nguyên tố
2.
Ta có: abcabc=abc.1001. Mà 1001 chia hết cho 7;11;13 => abc.1001 chia hết cho 7;11;13 là 3 số nguyên tố hay abcabc chia hết cho 3 số nguyên tố 7;11;13(ĐPCM)
3.
Với p thuộc N thì p có 1 trong 3 dạng sau : 3k ; 3k+1 ; 3k+2.
Nếu p=3k thì p chia hết cho 3 và p>3 => p không phải là sô nguyên tố (không t/m đề ra)
Nếu p=3k+2 thì p+4=3k+2+4=3k+6 chia hết cho 3=> p+4 chia hết cho 3 và p+4>3 (vì p>3) =>p+4 không phải là số nguyên tố (không t/m đề ra)
Vậy p=3k+1 (t/m)
Do p=3k+1 nên p+8=3k+1+8=3k+9. Mà 3k+9 chia hết cho 3 => p+8 chia hết cho 3 và p+8>3 (do p>3) => p+8 là hợp số (ĐPCM)
Bạn nên ghi rõ đề bài 1 nha. Chúc bạn học tốt.