Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. ta có aaabbb=100000a+10000a+1000a+100b+10b+b=111000a+111b.
111000a:111 vì có 111 còn những số 0 kia có chia cũng bằng 0
111b:111 vì 111 đã chia hết cho 111
=>aaabbb chia hết cho 111
a. Ta có: 11a + 14b
= 110 + a + 140 + b
= 110 + 140 + a + b
= 250 + a + b
= 50 . 5 + a + b chia hết cho 5
b. Ta có: 14a + 26b
= 140 + a + 260 + b
= 140 + 260 + a +b
= 500 + a + b
= 5 . 100 + a + b chia hết cho 5
Chúc bn hk tốt nhé !!
a) chứng minh 11a +14b chia hết cho 5
\(11a+14b=110+a+140+b\)
Mà \(110⋮5\)
\(140⋮5\)
\(\Rightarrow11a+14b⋮5\)
b)chúng minh 14a + 26b chia hết cho 5
\(14a+26b=140+a+260+b\)
Mà : \(140⋮5\)
\(260⋮5\)
\(\Rightarrow14a+26b⋮5\)
Học tốt
1) Ta có : 11a + 22b + 33c
= 11a + 11.2b + 11.3c
= 11.(a + 2b + 3c) \(⋮\)11
=> 11a + 22b + 33c \(⋮\)11
2) 2 + 22 + 23 + ... + 2100
= (2 + 22) + (23 + 24) + ... + (299 + 2100)
= (2 + 22) + 22.(2 + 22) + ... + 298.(2 + 22)
= 6 + 22.6 + ... + 298.6
= 6.(1 + 22 + .. + 298)
= 2.3.(1 + 22 + ... + 298) \(⋮\)3
=> 2 + 22 + 23 + ... + 2100 \(⋮\)3
3) Ta có: abcabc = abc000 + abc
= abc x 1000 + abc
= abc x (1000 + 1)
= abc x 1001
= abc .7. 13.11 (1)
= abc . 7 . 13 . 11 \(⋮\)7
=> abcabc \(⋮\)7
=> Từ (1) ta có : abcabc = abc x 7.11.13 \(⋮\)11
=> abcabc \(⋮\)11
=> Từ (1) ta có : abcabc = abc . 7.11.13 \(⋮\) 13
=> => abcabc \(⋮\)13
1
.\(11a+22b+33c=11\left(a+2b+3c\right)⋮11\)
\(\Rightarrow11a+22b+33c⋮11\left(đpcm\right)\)
hc tốt
Vì abcabc = 1001 x abc
Mà 1001 lại chia hết cho 11
=> abcabc chia hết cho 11
Hội con 🐄 chúc bạn học tốt!!!
Ta có : 5 : 4 dư 1 suy ra 5 -1 chia hết cho 4
5^2 :4 dư 1 suy ra 5^2 -1 chia hết cho 4
5^3 :4 dư 1 suy ra 5^3 -1 chia hết cho 4
suy ra 5^n : 4 dư 1 suy ra 5^n - 1 chia hết cho 4
Vậy 5^n - 1 chia hết cho 4 với n thuộc N
tk mk nha
5 : 4 dư 1 thì 5n với n thuộc Z chia cho 4 cũng dư 1
=> Vậy nếu 5n - 1 thì tất nhiên Chia hết cho 4
\(7x+4y⋮37\Leftrightarrow5\left(7x+4y\right)⋮37\Leftrightarrow35x+20y⋮37\)(dùng dấu 2 chiều vì \(\left(5,37\right)=1\))
Lại có \(74x+74y⋮37\)suy ra \(\left(74x+74y\right)-\left(35x+20y\right)⋮37\)
Điều đó có nghĩa là \(39x+54y⋮37\Leftrightarrow3\left(13x+18y\right)⋮37\)mà \(\left(3,37\right)=1\)nên \(13x+18y⋮37\)
Chúc bạn học tốt!
ta có
A=9(7x+4y) - 2(13x+18y)
A=63x+36y-26x-36y
A=x(63-26)-(36y-36y)
A=37x
=>A chia hết cho 37
mà 7x+4y chia hết cho 37=>9(7x+4y) chia hết cho 37
9(7x+4y) chia hết cho 37=>2(13x+18y)
mà 2 và 37 nguyên tố cùng nhau =>13x+18y chia hết cho 37
vậy 7x+4y chia hết cho 37 thì 13x+18y chia hết cho 37
Chứng minh rằng: Số 11...1(n chữ số 1)-10n chia hết cho 9
Các bạn giúp mình với mình cảm ơn rất nhiều
a.1111111...1 = 10^(n-1) + 10^(n-2) +....1 (gồm n số 1)
10^n chia 9 dư 1 => 10^(n-1) = 9.k(n-1) + 1
10^(n-1) chia 9 dư 1 => 10^(n-2) = 9.k(n-2) +1
.....
10 chia 9 dư 1 => 10 = 9.k1 + 1 (ở đây k1=3)
=>11111....1 = 9.(k1 + k2 +... + k(n-1)) +(1+1+...+1) (gồm n số 1)
= 9.A + n
=>8n + 11111...1= 9A +9n chia hết cho 9
b.11111111....1 (gồm 27 số 1)
= 1111...100.....0 + 11111...10000...0 + 1111...1
-------------------------- ----------------------- -----------
9chữsố1;18chữsố 0 9chữsô1;9chữsố0 9chữsô1
=111111111 x (10^18 + 10^9 +1)
ta có: 111111111 chia hết cho 9 (tổng các chữ số =9)
10^18 chia 3 dư 1
10^9 chia 3 sư 1
=> 10^18 + 10^9 +1 chia hết cho 3
vậy 1111.....1111 chia hết cho 27 (gồm 27 số 1)
1.
Ta có:
aaabbb= aaa000+bbb
= a . 111000 + b .111
Vì 111000 \(⋮\) 111 => a.111000 \(⋮\) 111 (1)
111 \(⋮\) 111 => b.111 \(⋮\) 111 (2)ư
Từ (1) và (2) => a.111000 + b.111 \(⋮\) 111
=> aaabbb \(⋮\) 111 (đpcm)
Mình ko biết chứng minh