K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 8 2015

1)Ta có:

\(111...11222...22\left(100 cs 1 v\text{à} 2\right)=10^{100}.111...111\left(100 cs 1\right)+222...22\left(100 cs 2\right)\)

\(=10^{100}.\frac{10^{100}-1}{9}+2.\frac{10^{100}-1}{9}=\frac{10^{100}\left(10^{100}-1\right)+2\left(10^{100}-1\right)}{9}=\frac{\left(10^{100}+2\right)\left(10^{100}-1\right)}{9}=\frac{10^{100}+2}{3}.\frac{10^{100}-1}{3}\)

\(M\text{à} \frac{10^{100}+2}{3}\ne\frac{10^{100}-1}{3} \)

\(\Rightarrow111...11222..2\left(100 cs 1 v\text{à} 2\right) \) không phải là tích 2 số tự nhiên

2) Để dacb chia hết cho 4 thì cb chia hết cho 4

Ta có :

cb=10c+b=8c+2c+b

Mà 8c chia hết cho 4 nên

2c+b cũng phải chia hết cho 4(đpcm)

3 tháng 10 2016

Bài 1:

a)Gọi 3 số đó là a;a+1;a+2

Ta có:

a+a+1+a+2=(a+a+a)+(1+2)

=3a+3=3(a+1) chia hết 3

Vậy ta có tổng của 3 số tự nhiên liên tiếp là một số chia hết cho 3

b)Gọi 4 số đó là a;a+1;a+2;a+3

Ta có:

a+a+1+a+2+a+3=(a+a+a+a)+(1+2+3)

=4a+6

Ta thấy: 4a chia hết 4, mà 6 không chia hết 4 

Vậy ta có tổng của 4 số tự nhiên liên tiếp là một số không chia hết cho 4

14 tháng 10 2019

1. Chứng tỏ rằng: ab + ba chia hết cho 11:

Ta có: ab+ba=10a+b+10b+a=11a+11b=11(a+b) 

Vì \(11\left(a+b\right)⋮11\)

\(\Rightarrow ab+ba⋮11\)

Chứng tỏ rằng: ab - ba chia hết cho 9

Ta có: ab-ba=10a+b-10b-a=9a-9b=9(a-b)

vì \(9\left(a-b\right)⋮9\)

\(\Rightarrow ab-ba⋮9\)

14 tháng 10 2019

1. a) Ta có : ab + ba =  (a0 + b) + (b0 + a)

                                = (10a + b) + (10b + a)

                                = 10a + b + 10b + a

                                = (10a + a) + (b + 10b)

                                = 11a + 11b

                                = 11(a + b) \(⋮\)11

=> ab + ba  \(⋮\)11 (ĐPCM)

b) Ta có : ab - ba = (a0 + b) - (b0 + a) 

                            = (10a + b) - (10b + a) 

                            = 10a + b - 10b - a

                            = (10a - a) - (10b - b)

                            = 9a - 9b

                            = 9(a - b) \(⋮\)9

=>  ab + ba  \(⋮\)9 (ĐPCM)

2) Gọi 3 số tự nhiên liên tiếp là a ; a + 1 ; a + 2

Khi đó a + a + 1 + a + 2

   = 3a + 3

   = 3(a + 1) \(⋮\)3 (ĐPCM)

3) 

Gọi 3 số tự nhiên liên tiếp là a ; a + 1 ; a + 2

Khi đó a + a + 1 + a + 2

   = 3a + 3

   = 3(a + 1) 

=> Tổng của 3 số liên không chia hết cho 4 (ĐPCM)

1 tháng 2 2018

a, Vì 3^100 và 19^990 đều lẻ nên 3^100+19^990 chẵn

=> 3^100+19^990 chia hết cho 2

b, Gọi 4 số tự nhiên liên tiếp lần lượt là : n;n+1;n+2;n+3 ( n thuộc N )

Xét : n+n+1+n+2+n+3 = 4n+6

Vì 4n chia hết cho 4 mà 6 ko chia hết cho 4 => 4n+6 ko chia hết cho 4

=> ĐPCM

Tk mk nha

13 tháng 7 2020

nguyễn anh quân bạn phải giải thích ra vì sao 3^100 và 19^990 là số lẻ chứ

18 tháng 7 2017

1,

\(A=2^0+2^1+2^2+..+2^{2006}\)

\(=1+2+2^2+...+2^{2016}\)

\(2A=2+2^2+2^3+..+2^{2007}\)

\(2A-A=\left(2+2^2+2^3+..+2^{2007}\right)-\left(1+2+2^2+..+2^{2006}\right)\)

           \(A=2^{2017}-1\)

\(B=1+3+3^2+..+3^{100}\)

\(3B=3+3^2+3^3+..+3^{101}\)

\(3B-B=\left(3+3^2+..+3^{101}\right)-\left(1+3+..+3^{100}\right)\)

\(2B=3^{101}-1\)

\(\Rightarrow B=\frac{3^{100}-1}{2}\)

\(D=1+5+5^2+...+5^{2000}\)

\(5D=5+5^2+5^3+...+5^{2001}\)

\(5D-D=\left(5+5^2+..+5^{2001}\right)-\left(1+5+...+5^{2000}\right)\)

\(4D=5^{2001}-1\)

\(D=\frac{5^{2001}-1}{4}\)

18 tháng 7 2017

các bn giúp mk nha càng nhanh càng tốt

ai nhanh mk TC cho