Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1.
[ 4( x - y )5 + 2( x - y )3 - 3( x - y )2 ] : ( y - x )2 < sửa một lũy thừa rồi nhé >
= [ 4( x - y )5 + 2( x - y )3 - 3( x - y )3 ] : ( x - y )2
Đặt t = x - y
bthuc ⇔ ( 4t5 + 2t3 - 3t2 ) : t2
= 4t5 : t2 + 2t3 : t2 - 3t2 : t2
= 4t3 + 2t - 3
= 4( x - y )3 + 2( x - y ) - 3
Bài 2.
5x( x - 2 ) + 3x - 6 = 0
⇔ 5x( x - 2 ) + 3( x - 2 ) = 0
⇔ ( x - 2 )( 5x + 3 ) = 0
⇔ x - 2 = 0 hoặc 5x + 3 = 0
⇔ x = 2 hoăc x = -3/5
Bài 3.
A = x2 - 6x + 2023
= ( x2 - 6x + 9 ) + 2014
= ( x - 3 )2 + 2014 ≥ 2014 ∀ x
Dấu "=" xảy ra khi x = 3
=> MinA = 2014 <=> x = 3
Bài 4.
B = ( 3x + 5 )2 + ( 3x - 5 )2 - 2( 3x + 5 )( 3x - 5 )
= [ ( 3x + 5 ) - ( 3x - 5 ) ]2
= ( 3x + 5 - 3x + 5 )2
= 102 = 100
Vậy B không phụ thuộc vào x ( đpcm )
Bài 6.
C = 12 - 22 + 32 - 42 + 52 - 62 + ... + 20132 - 20142 + 20152
= ( 20152 - 20142 ) + ... + ( 52 - 42 ) + ( 32 - 22 ) + 1
= ( 2015 - 2014 )( 2015 + 2014 ) + ... + ( 5 - 4 )( 5 + 4 ) + ( 3 - 2 )( 3 + 2 ) + 1
= 4029 + ... + 9 + 5 + 1
= \(\frac{\left(4029+1\right)\left[\left(4029-1\right)\div4+1\right]}{2}\)
= 2 031 120
Câu 1:
\(A=x\left(x^2+x+1\right)-x^2\left(x+1\right)-x+5\)
\(A=x^3+x^2+x-x^3-x^2-x+5\)
\(A=5\)
Vậy GT A ko phụ thuộc vào biến
B đề sai
Còn câu 2 mk ko hiêu g hết
A = x^3+x^2+x - x^3-x^2-x+5
A= ( x^3-x^3 ) + ( x^2 - x^2)+ ( x -x ) +5
A=0+0+0+5
A=5
Vậy giá trị của biểu thức bằng 5 không phụ thuộc vào giá trị của x .
Biểu thức B , làm tương tự nhé !!!
1,sai đề
2, \(\dfrac{x^2}{xy+x}+\dfrac{y}{y^2-1}-\dfrac{x}{x\left(y-1\right)}\)
\(=\dfrac{x^2}{x\left(y+1\right)}+\dfrac{y}{\left(y-1\right)\left(y+1\right)}-\dfrac{x}{x\left(y-1\right)}\)
\(=\dfrac{x}{y+1}+\dfrac{y}{\left(y-1\right)\left(y+1\right)}-\dfrac{1}{y-1}\)
\(=\dfrac{x\left(y-1\right)-y-1}{\left(y+1\right)\left(y-1\right)}+\dfrac{y}{\left(y-1\right)\left(y+1\right)}\)
\(=\dfrac{xy-x-y-1+y}{y^2-1}=\dfrac{xy-x-1}{y^2-1}\)
3, \(2\left(x+5\right)-x^2-5x=0\)
\(\Leftrightarrow2\left(x+5\right)-x\left(x+5\right)=0\)
\(\Leftrightarrow\left(2-x\right)\left(x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2-x=0\\x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-5\end{matrix}\right.\)
Vậy x = 2 hoặc x = -5
Bài 1 :
Sửa đề :\(\left(x-5\right)\left(2x+3\right)-2x\left(x-3\right)+\left(x+7\right)\)
\(=2x^2+3x-10x-15-x^2+6x+x+7\)
\(=2x^2-2x^2-7x+7x-15+7\)
\(=-8\)
\(\Rightarrow\) Biểu thức trên bằng 8 nên giá trị của biểu thức ko phụ thuộc vào giá trị của biến x
Bài 2 , 3 : Tú làm ròi nghĩ làm
Bài \(3\)
\(A=\left(x-5\right)\left(2x+3\right)-2x\left(x-3\right)+x+7\)
\(=2x^2+3x-10x-15-\left(2x^2-6x\right)+x+7\)
\(=2x^2+3x-10x-15-2x^2+6x+x+7\)
\(=\left(2x^2-2x^2\right)+\left(3x-10x+6x+x\right)+\left(-15+7\right)\)
\(=-8\)
Vậy biểu thức không phụ thuộc vào biến
\(B=4\left(y-6\right)-y^2\left(2+3y\right)+y\left(5y-4\right)+3y^2\)
Đề như này à?
Bài \(4\)
\(a,4a^2-16b^2=4\left(a^2-4b^2\right)=4\left(a-2b\right)\left(a+2b\right)\)
\(b,4x^2-4x+1=\left(2x\right)^2-2.2x.1+1^2=\left(2x+1\right)^2\)
\(c,\) ?
\(d,\left(x-y\right)^2-\left(2x-y\right)^2\\ =\left[\left(x-y\right)-\left(2x-y\right)\right]\left[\left(x-y\right)+\left(2x-y\right)\right]\\ =\left(x-y-2x+y\right)\left(x-y+2x-y\right)\\ =\left(-x\right)\left(3x-2y\right)\)
\(e,8x^3-y^3=\left(2x\right)^3-y^3\\ =\left(2x-y\right)\left(4x^2+2xy+y^2\right)\)
\(i,3x+6y+\left(x+2y\right)\\ =3\left(x+2y\right)+\left(x+2y\right)\\ =4\left(x+2y\right)\)
\(j,ax-ay-x+y=\left(ãx-ay\right)-\left(x-y\right)\\ =a\left(x-y\right)-\left(x-y\right)=\left(x-y\right)\left(a-1\right)\)
`k,` `y` hay `y^2` ạ? vì nó mới phân tích được nhân tử.
Bài 1 :
a, \(\left(x^2-2x+3\right)\left(x-4\right)=0\)
TH1 : \(x^2-2x+3=0\)
\(\left(-2\right)^2-4.3=4-12< 0\)vô nghiệm
TH2 : \(x-4=0\Leftrightarrow x=4\)
b, \(\left(2x^2-3x-1\right)\left(5x+2\right)=0\)
TH1 : \(\left(-3\right)^2-4.\left(-1\right).2=9+8=17>0\)
\(\Rightarrow x_1=\frac{3-\sqrt{17}}{4};x_2=\frac{3+\sqrt{17}}{4}\)
TH2 ; \(5x+2=0\Leftrightarrow x=-\frac{2}{5}\)
c, đưa về hệ đc ko ?
d, \(\left(5x^3-x^2+2x-3\right)\left(4x^2-x+2\right)=0\)
TH1 : \(x=0,74...\) ( bấm máy cx ra )
TH2 : \(\left(-1\right)^2-4.2.4< 0\)vô nghiệm
KL : vô nghiệm
Bài 2 :
a, \(\left(3x-1\right)\left(2x+7\right)-\left(x+1\right)\left(6x-5\right)-\left(18x-12\right)\)
\(=6x^2+21x-2x-7-6x^2+5x-6x+5-18x+12=10\)
Vậy biểu thức ko phụ thuộc vào biến
b, \(\left(x-y\right)\left(x^3+x^2y+xy^2+y^3\right)-x^4y^4\)
\(=x^4+x^3y+x^2y^2+xy^3-yx^3-y^2x^2-y^3x-y^4-x^4y^4\)
\(=x^4-y^4-x^4y^4\)Vậy biểu thức phụ thuộc vào biến
Lời giải:
$P=(x+1)^3-(x+1)^3-[(x-1)^2+(x+1)^2]$
$=-[(x-1)^2+(x+1)^2]=-[(x^2-2x+1)+(x^2+2x+1)]=-2(x^2+1)$ phụ thuộc vào giá trị của biến nhé. Bạn xem lại đề.
$Q=(2x)^3-y^3+(2x)^3+y^3-16x^3$
$=8x^3-y^3+8x^3+y^3-16x^3=(8x^3+8x^3-16x^3)+(-y^3+y^3)=0+0=0$ không phụ thuộc vào giá trị của biến (đpcm)
bai1 : =5x2-3x-x3+x2+x3-6x2-10+3x
=(-10)
suy ra biểu thức ko phụ thuộc vào biến
Bài 1:
\(Q=\left(x+1\right)\left(x^2-x+1\right)-\left(x-1\right)\left(x^2+x+1\right)\)
\(Q=x^3+1-\left(x^3-1\right)=x^3+1-x^3+1=2\)
Vậy......................
Bài 2:
\(5x-\left(4-2x+x^2\right)\left(x+2\right)+x\left(x-1\right)\left(x+1\right)=0\)
\(\Rightarrow5x-\left(x^3+8\right)+x\left(x^2-1\right)=0\)
\(\Rightarrow5x-x^3-8+x^3-x=0\)
\(\Rightarrow4x=8\Rightarrow x=2\)
Chúc bạn học tốt!!!
cảm ơn