Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{\left(2x+5\right)^2+\left(5x-2\right)^2}{x^2+1}=\dfrac{4x^2+20x+25+25x^2-20x+4}{x^2+1}\)
\(=\dfrac{29x^2+29}{x^2+1}=\dfrac{29\left(x^2+1\right)}{x^2+1}=29\)
Vậy.....
Ta có: \(\dfrac{\left(2x+5\right)^2+\left(5x-2\right)^2}{x^2+1}\)
\(=\dfrac{4x^2+20x+25+25x^2-20x+4}{x^2+1}\)
\(=\dfrac{29x^2+29}{x^2+1}=29\)
a, \(\dfrac{\left(x+5\right)^2+\left(x-5\right)^2}{x^2+25}=\dfrac{x^2+10x+25+x^2-10x+25}{x^2+25}\)
\(=\dfrac{2\left(x^2+25\right)}{x^2+25}=2\forall x\)
\(\Rightarrowđpcm\)
b, \(\dfrac{\left(2x+5\right)^2+\left(5x-2\right)^2}{x^2+1}\)
\(=\dfrac{4x^2+20x+25+25x^2-20x+4}{x^2+1}\)
\(=\dfrac{29\left(x^2+1\right)}{x^2+1}=29\forall x\)
\(\Rightarrowđpcm\)
T ko biết làm, chỉ hỏi liên thiên thôi :)))
Hủ phải không???? OvO Dưa Trong Cúc
1: \(B=\dfrac{2x+1-x^2+2x^2-3x-1}{x\left(2x+1\right)}=\dfrac{x^2-x}{x\left(2x+1\right)}=\dfrac{x-1}{2x+1}\)
2: \(C=A:B\)
\(=\dfrac{x-1}{x^2}:\dfrac{x-1}{2x+1}=\dfrac{2x+1}{x^2}\)
\(C+1=\dfrac{2x+1+x^2}{x^2}=\dfrac{\left(x+1\right)^2}{x^2}>=0\)
=>C>=-1
a/ \(=8x^3+2x^2-8x^3-8x^2-8x^3-2x+3=-8x^3-6x^2-2x+3\)
b/ \(=3x^2+12x-7x+20+2x^3-3x^2-2x^3-5x=20\)
Biểu thức A phụ thuộc vào x còn B thì không.
a: \(=6x^2-9x+14x-21-4x^2+20x-25-2x\left(x+6\right)+5-31x\)
\(=2x^2-6x-41-2x^2-12x\)
=-18x-41
b: \(=2x^2-6x-2x^2+6x+14=14\)
c: \(=x^3+1-x^3+1=2\)
1)
\(M=\dfrac{1}{3}x^2+2x+10\)
\(=\dfrac{1}{3}.\left(x^2+6x+30\right)\)
\(=\dfrac{1}{3}\left(x^2+2.x.3+9\right)+7\)
\(=\dfrac{1}{3}.\left(x+3\right)^2+7\) \(\ge\) 7 với \(\forall\) x
=> M luôn dương
=> đpcm
2)
a) \(2x-x^2-15\)
\(=-\left(x^2-2x+15\right)\)
\(=-\left(x^2-2x+1\right)-14\)
\(=-\left(x-1\right)^2-14\) \(\le-14\) với \(\forall\) x
=> \(2x-x^2-15\) luôn âm
=> đpcm
b) \(-5-\left(x-1\right)\left(x+2\right)\)
\(=-5-x^2-2x+x+2\)
\(=-x^2-x-3\)
\(=-\left(x^2+x+3\right)\)
\(=-\left(x^2+2.\dfrac{1}{2}.x+\dfrac{1}{4}\right)-\dfrac{11}{4}\)
\(=-\left(x+\dfrac{1}{2}\right)^2-\dfrac{11}{4}\le-\dfrac{11}{4}\) với \(\forall\) x
=> \(-5-\left(x-1\right)\left(x+2\right)\) luôn âm
=> đpcm
\(M=\dfrac{1}{3}x^2+2x+10=\dfrac{1}{3}\left(x^2+6x+9\right)+7\)
\(=\dfrac{1}{3}\left(x+3\right)^2+7\)
Ta có:
\(\dfrac{1}{3}\left(x+3\right)^2\ge\forall x\Rightarrow\dfrac{1}{3}\left(x+3\right)^2+7>0\)
=>đpcm
\(2,a,2x-x^2-15\)
\(=-\left(x^2-2x+1\right)-14\)
\(=-\left(x-1\right)^2-14\)
Ta có:
\(-\left(x-1\right)^2\le0\forall x\Rightarrow-\left(x-1\right)^2-14< 0\)
=> đpcm
\(b,-5-\left(x-1\right)\left(x+2\right)\)
\(=-5-\left(x^2+x-2\right)\)
\(=-5-x^2-x+2\)
\(=-\left(x^2+x+\dfrac{1}{4}\right)-\dfrac{11}{4}\)
\(=-\left(x+\dfrac{1}{2}\right)^2-\dfrac{11}{4}\)
Ta có:
\(-\left(x+\dfrac{1}{2}\right)^2\le0\forall x\Rightarrow-\left(x+\dfrac{1}{2}\right)-\dfrac{11}{4}< 0\)=> đpcm