Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn tham khảo:
Câu hỏi của tran duc huy - Toán lớp 10 | Học trực tuyến
\(a+\frac{4}{b\left(a-b\right)^2}=a-b+b+\frac{4}{b\left(a-b\right)^2}\ge a-b+2\sqrt{\frac{4b}{b\left(a-b\right)^2}}=a-b+\frac{4}{a-b}\ge4\)
Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}a=3\\b=1\end{matrix}\right.\)
b/ \(a-b+\frac{4}{\left(a-b\right)\left(b+1\right)^2}+b\ge2\sqrt{\frac{4\left(a-b\right)}{\left(a-b\right)\left(b+1\right)^2}}+b=\frac{4}{b+1}+b+1-1\ge4-1\)
Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}a=2\\b=1\end{matrix}\right.\)
Đề bài có vấn đề nho nhỏ, thay điểm rơi vào thì vế phải thừa bình phương trong ngoặc
Áp dụng Holder:
\(\left(a^2+\frac{1}{b^2}\right)\left(4+\frac{1}{4}\right)\left(4+\frac{1}{4}\right)\ge\left(\sqrt[3]{16a^2}+\sqrt[3]{\frac{1}{16b^2}}\right)^3\)
\(\Rightarrow\sqrt[3]{17^2\left(a^2+\frac{1}{b^2}\right)}\ge4\sqrt[3]{4a^2}+\frac{1}{\sqrt[3]{b^2}}\)
\(\Rightarrow P=\sqrt[3]{17^2}.S\ge4\sqrt[3]{4}\left(\sqrt[3]{a^2}+\sqrt[3]{b^2}+\sqrt[3]{c^2}\right)+\frac{1}{\sqrt[3]{a^2}}+\frac{1}{\sqrt[3]{b^2}}+\frac{1}{\sqrt[3]{c^2}}\)
\(P=\frac{15}{\sqrt[3]{16}}\sum\sqrt[3]{a^2}+\sum\left(\sqrt[3]{\frac{a^2}{16}}+\frac{1}{\sqrt[3]{a^2}}\right)\)
Ta có: \(3\sqrt[3]{a^2}+\sqrt[3]{4}\ge4\sqrt[12]{4a^6}=4\sqrt[6]{2}.\sqrt{a}\)
Tương tự và cộng lại:
\(\Rightarrow\sum\sqrt[3]{a^2}\ge\frac{4\sqrt[6]{2}\sum\sqrt{a}-3\sqrt[3]{4}}{3}\ge3\sqrt[3]{4}\)
\(\sum\left(\sqrt[3]{\frac{a^2}{16}}+\frac{1}{\sqrt[3]{a^2}}\right)\ge6\sqrt[6]{\frac{1}{16}}=\frac{6}{\sqrt[3]{4}}\)
\(\Rightarrow P\ge\frac{15}{\sqrt[3]{16}}.3\sqrt[3]{4}+\frac{6}{\sqrt[3]{4}}=\frac{51}{\sqrt[3]{4}}=3.\sqrt[3]{\frac{17^3}{4}}\)
\(\Rightarrow S\ge3\sqrt[3]{\frac{17^3}{4}}:\sqrt[3]{17^2}=3\sqrt[3]{\frac{17}{4}}\)
Dấu "=" xảy ra khi \(a=b=c=2\)
Bài toán nhạt nhẽo, chẳng có gì ngoài tính trâu, lần sau xin né :(
\(a-b+b+\frac{1}{b\left(a-b\right)}\ge3\sqrt[3]{\frac{\left(a-b\right)b.1}{b\left(a-b\right)}}=3\)
Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}a=2\\b=1\end{matrix}\right.\)
\(VT=a-b+\frac{4}{\left(a-b\right)\left(b+1\right)^2}+\frac{b+1}{2}+\frac{b+1}{2}-1\)
\(VT\ge4\sqrt[4]{\frac{4\left(a-b\right)\left(b+1\right)^2}{4\left(a-b\right)\left(b+1\right)^2}}-1=3\)
Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}b=1\\a=2\end{matrix}\right.\)
\(\frac{a-b}{2}+\frac{a-b}{2}+\frac{1}{b\left(a-b\right)^2}+b\ge4\sqrt[4]{\frac{b\left(a-b\right)^2}{4b\left(a-b\right)^2}}=\frac{4}{\sqrt{2}}=2\sqrt{2}\)
Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}a=\frac{3\sqrt{2}}{2}\\b=\frac{\sqrt{2}}{2}\end{matrix}\right.\)