Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Đặt \(d=\left(a_1,a_2,...,a_n\right)\Rightarrow\left\{{}\begin{matrix}a_1=dx_1\\a_2=dx_2\\...\\a_n=dx_n\end{matrix}\right.\) (với \(\left(x_1,x_2,...,x_n\right)=1\)).
Ta có \(A_i=\dfrac{A}{a_i}=\dfrac{d^nx_1x_2...x_n}{dx_i}=d^{n-1}\dfrac{x_1x_2...x_n}{x_i}=d^{n-1}B_i\forall i\in\overline{1,n}\).
Từ đó \(\left[A_1,A_2,...,A_n\right]=d^{n-1}\left[B_1,B_2,...,B_n\right]\).
Mặt khác do \(\left(x_1,x_2,...,x_n\right)=1\Rightarrow\left[B_1,B_2,...B_n\right]=x_1x_2...x_n\).
Vậy \(\left(a_1,a_2,...,a_n\right)\left[A_1,A_2,...,A_n\right]=d.d^{n-1}x_1x_2...x_n=d^nx_1x_2...x_n=A\).
CM :\(\left(1+a_1\right)+\left(1+a_2\right)+...+\left(1+a_n\right)\ge2^n\)
Áp dụng BĐT Cô si cho 2 số \(a_1\) và 1 :
\(a_1+1\ge2\sqrt{a_1}\ge0\)
Tương tự cũng có :
\(a_2+1\ge2\sqrt{a_2}\ge0\)
........
\(a_n+1\ge2\sqrt{a_n}\ge0\)
=> \(\left(1+a_1\right)+\left(1+a_2\right)+...+\left(1+a_n\right)\ge2^n\sqrt{a_1.a_2...a_n}=2^n\left(đpcm\right)\)
Dấu " = " xảy ra khi \(a_1=a_2=...=a_n=1\)
Mik sửa lại đề thành \(\left(1+a_1\right)+\left(1+a_2\right)+...+\left(1+a_n\right)\ge2^n\)
Lời giải:
Từ \(x+y+z=xyz\Rightarrow \frac{1}{xy}+\frac{1}{yz}+\frac{1}{xz}=1\)
Đặt \((\frac{1}{a}, \frac{1}{b}, \frac{1}{c})=(x,y,z)\), trong đó $a,b,c>0$ thì ta có:
\(ab+bc+ac=1\) và cần phải CMR:
\(P=\frac{\sqrt{(\frac{1}{b^2}+1)(\frac{1}{c^2}+1})-\sqrt{\frac{1}{b^2}+1}-\sqrt{\frac{1}{c^2}+1}}{\frac{1}{bc}}+\frac{\sqrt{(\frac{1}{c^2}+1)(\frac{1}{a^2}+1})-\sqrt{\frac{1}{c^2}+1}-\sqrt{\frac{1}{a^2}+1}}{\frac{1}{ac}}+\frac{\sqrt{(\frac{1}{a^2}+1)(\frac{1}{b^2}+1})-\sqrt{\frac{1}{a^2}+1}-\sqrt{\frac{1}{b^2}+1}}{\frac{1}{ab}}\)
-----------------------------------------------
Ta có:
\(\frac{\sqrt{(\frac{1}{b^2}+1)(\frac{1}{c^2}+1})-\sqrt{\frac{1}{b^2}+1}-\sqrt{\frac{1}{c^2}+1}}{\frac{1}{bc}}=\sqrt{(b^2+1)(c^2+1)}-b\sqrt{c^2+1}-c\sqrt{b^2+1}\)
\(=\sqrt{(b^2+ab+bc+ac)(c^2+ac+bc+ab)}-b\sqrt{c^2+ac+bc+ab}-c\sqrt{b^2+ab+bc+ac}\)
\(=\sqrt{(b+a)(b+c)(c+a)(c+b)}-b\sqrt{(c+a)(c+b)}-c\sqrt{(b+a)(b+c)}\)
\(=(b+c)\sqrt{(a+b)(a+c)}-b\sqrt{(c+a)(c+b)}-c\sqrt{(b+a)(b+c)}(1)\)
Tương tự:
\(\frac{\sqrt{(\frac{1}{c^2}+1)(\frac{1}{a^2}+1})-\sqrt{\frac{1}{c^2}+1}-\sqrt{\frac{1}{a^2}+1}}{\frac{1}{ac}}=(a+c)\sqrt{(b+a)(b+c)}-a\sqrt{(c+a)(c+b)}-c\sqrt{(a+b)(a+c)}(2)\)
\(\frac{\sqrt{(\frac{1}{a^2}+1)(\frac{1}{b^2}+1})-\sqrt{\frac{1}{a^2}+1}-\sqrt{\frac{1}{b^2}+1}}{\frac{1}{ab}}=(a+b)\sqrt{(c+a)(c+b)}-b\sqrt{(a+b)(a+c)}-a\sqrt{(b+c)(b+a)}(3)\)
Từ \((1);(2);(3)\Rightarrow P=(b+c-c-b)\sqrt{(a+b)(a+c)}+(a+c-c-a)\sqrt{(b+a)(b+c)}+(a+b-b-a)\sqrt{(c+a)(c+b)}\)
\(=0\)
Ta có đpcm.
1. Ta có: \(x+y+z=\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\)
\(\Rightarrow\left(x+y+z\right)^2=\left(\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\right)^2\)
\(\Leftrightarrow x^2+y^2+z^2+2xy+2yz+2xz=xy+yz+zx+2y\sqrt{xz}+2z\sqrt{xy}+2x\sqrt{yz}\)
\(\Leftrightarrow x^2+y^2+z^2+xy+yz+zx-2y\sqrt{xz}-2z\sqrt{xy}-2x\sqrt{yz}=0\)
\(\Leftrightarrow\left(x-\sqrt{yz}\right)^2+\left(y-\sqrt{xz}\right)^2+\left(z-\sqrt{xy}\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\sqrt{yz}\\y=\sqrt{xz}\\z=\sqrt{xy}\end{matrix}\right.\)
\(\Rightarrow x^2+y^2+z^2-xy-yz-zx=0\)
\(\Leftrightarrow2x^2+2y^2+2z^2-2xy-2yz-2zx=0\)
\(\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=0\Rightarrow x=y=z\)
Bài 1:
\(x+y+z=\sqrt{xy}+\sqrt{yz}+\sqrt{xz}\)
\(\Leftrightarrow x+y+z-\sqrt{xy}-\sqrt{yz}-\sqrt{xz}=0\)
\(\Leftrightarrow 2x+2y+2z-2\sqrt{xy}-2\sqrt{yz}-2\sqrt{xz}=0\)
\(\Leftrightarrow (x+y-2\sqrt{xy})+(y+z-2\sqrt{yz})+(z+x-2\sqrt{xz})=0\)
\(\Leftrightarrow (\sqrt{x}-\sqrt{y})^2+(\sqrt{y}-\sqrt{z})^2+(\sqrt{z}-\sqrt{x})^2=0\)
Vì \( (\sqrt{x}-\sqrt{y})^2;(\sqrt{y}-\sqrt{z})^2;(\sqrt{z}-\sqrt{x})^2\geq 0, \forall x,y,z>0\) nên để tổng của chúng bằng $0$ thì:
\( (\sqrt{x}-\sqrt{y})^2=(\sqrt{y}-\sqrt{z})^2=(\sqrt{z}-\sqrt{x})^2=0\)
\(\Rightarrow x=y=z\) (đpcm)