K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
12 tháng 7 2021

undefined

NV
12 tháng 7 2021

O là trung điểm AB \(\Rightarrow OA=OB=\dfrac{AB}{2}=a\)

Áp dụng định lý Pitago:

\(AD=\sqrt{AO^2+OD^2}=\dfrac{a\sqrt{5}}{2}\)

Xét hai tam giác vuông AOD và ACB có góc A chung

\(\Rightarrow\Delta AOD\sim\Delta ACB\Rightarrow\dfrac{AD}{AB}=\dfrac{AO}{AC}\Rightarrow AC=\dfrac{AO.AB}{AD}=\dfrac{4a\sqrt{5}}{5}\) 

\(BC=\sqrt{AB^2-AC^2}=\dfrac{2a\sqrt{5}}{5}\)

b. Ta có: \(AE=\sqrt{AO^2+OE^2}=a\sqrt{2}\)

\(BE=\sqrt{OB^2+OE^2}=a\sqrt{2}\)

\(\Rightarrow AE^2+BE^2=4a^2=AB^2\)

\(\Rightarrow\Delta ABE\) vuông tại E (Pitago đảo)

\(\Rightarrow\) Hai điểm E và C cùng nhìn AB dưới 1 góc vuông nên bốn điểm A,B,C,E cùng thuộc đường tròn đường kính AB (đpcm)

24 tháng 8 2016

Bạn ơi cho mình hỏi, từ B kẻ BC vuông góc với AD tại đâu vậy?