K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 2 2018

Em tham khảo tại đây nhé.

Câu hỏi của Hằng Dương Thị - Toán lớp 7 - Học toán với OnlineMath

Em kham khảo link này nhé.

Câu hỏi của Hằng Dương Thị - Toán lớp 7 - Học toán với OnlineMath

a: góc CAE=góc BAE=60/2=30 độ

góc KEB=90-30=60 độ

góc BED=góc AEC=90-30=60 độ

=>góc KEB=góc DEB

=>EB là phân giác của góc KED

góc AEK=góc BEK

=>EK là phân giác của góc BEA

b:Đề sai rồi bạn

26 tháng 2 2018

Câu a, b, c em tham khảo tại đây :

Câu hỏi của Bảo Trân Nguyễn Hoàng - Toán lớp 7 - Học toán với OnlineMath

d) Gọi M là giao điểm của AC và BD.

Xét tam giác AMB có AD và BC là các đường cao nên E là trực tâm.

Suy ra \(ME\perp AB\)

Lại có \(EK\perp AB\)nên E, K, M thẳng hàng.

Hay AC, BD, EK đồng quy tại M.

5 tháng 6 2020

a) Xét △BEA và △BAC có :

           \(\widehat{E}=\widehat{A}\left(=90^o\right)\)

           \(\widehat{B}\)là góc chung

\(\Rightarrow\)△BEA ~ △BAC (g.g)

b) +) Vì △BEA ~ △BAC

\(\Rightarrow\frac{AB}{BC}=\frac{BE}{AB}\)

\(\Rightarrow AB^2=BE.BC\)

\(\Rightarrow BE=1,8\left(cm\right)\)

+) Áp dụng định lý Pythagoras vào △ABC, ta được :

     \(BC^2=AB^2+AC^2\)

\(\Rightarrow AC^2=5^2-3^2\)

\(\Rightarrow AC^2=16\)

\(\Rightarrow AC=4\left(cm\right)\)

+) Vì △BEA ~ △BAC

\(\Rightarrow\frac{AE}{AC}=\frac{BE}{AB}\)

\(\Rightarrow AE=\frac{AC.BE}{AB}=\frac{4\cdot1,8}{3}=2,4\left(cm\right)\)

c) Xét △BAI và △BEK có :

           \(\widehat{A}=\widehat{E}=\left(90^o\right)\)

           \(\widehat{ABI}=\widehat{IBC}\left(=\frac{1}{2}\widehat{ABC}\right)\)

\(\Rightarrow\)Vì △BAI ~ △BEK (g.g)

\(\Rightarrow\frac{EK}{AI}=\frac{BE}{BA}\)

\(\Rightarrow BE.AI=BA.EK\)(ĐPCM)

d) Vì BI là tia phân giác \(\widehat{B}\)của Vì △ABC

\(\Rightarrow\hept{\begin{cases}\frac{KA}{KE}=\frac{AB}{BE}\\\frac{IC}{IA}=\frac{BC}{AB}\end{cases}}\)

Vì Vì △BEA ~ △BAC

\(\Rightarrow\frac{AB}{BE}=\frac{BC}{AB}\)

\(\Rightarrow\frac{KA}{KE}=\frac{IC}{IA}\)(ĐPCM)

a:

Ta có: DE\(\perp\)AC

AB\(\perp\)AC

Do đó: DE//AB

Xét ΔCAB có ED//AB

nên \(\dfrac{CE}{EA}=\dfrac{CD}{DB}\)

=>\(\dfrac{BD}{DC}=\dfrac{AE}{EC}\)

b: Xét ΔHBA vuông tại H và ΔEDC vuông tại E có

\(\widehat{EDC}=\widehat{HBA}\)(hai góc đồng vị, DE//AB)

Do đó: ΔHBA~ΔEDC