Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C D E
a, xét tam giác ABD và tam giác AED có AB = AE (Gt)
AD chung
^BAD = ^EAD do AD Là pg của ^BAC (Gt)
=> tg ABD = tg AED (c-g-c)
=> BD = ED (Đn)
=> tam giác BED cân tại D (đn)
b, tg ABC có AD là pg => DC/AC = DB/AB (tc)
có AC > AB (GT)
=> DC > DB
Bài làm
a) Xét tam giác ADB và tam giác ADE có:
AB = AE ( gt )
\(\widehat{BAD}=\widehat{EAD}\)( Do AD phân giác )
AD chung
=> Tam giác ADB = tam giác ADE ( c.g.c )
=> BD = DE
=> Tam giác DBE cân ở D.
b) Kẻ BH là tia đối của tia BA.
Xét tam giác BAC có: \(\widehat{CBH}=\widehat{BAC}+\widehat{ACB}\)
=> \(\widehat{ACB}< \widehat{CBH}\)
Hay \(\widehat{DCE}< \widehat{CBH}\) (1)
Vì tam giác ADB = tam giác ADE ( cmt )
=> \(\widehat{ABD}=\widehat{AED}\)
Mà \(\widehat{ABD}+\widehat{DBH}=180^0\)( Hai góc kề bù )
\(\widehat{AED}+\widehat{DEC}=180^0\)( Hai góc kề bù )
=> \(\widehat{DBH}=\widehat{DEC}\)
Hay \(\widehat{CBH}=\widehat{DEC}\) (2)
Từ (1) và (2) => \(\widehat{DCE}< \widehat{DEC}\)
Xét tam giác DEC có:
\(\widehat{DCE}< \widehat{DEC}\)
=> DE < DC ( Qua hệ giữ cạnh và góc đối diện )
Mà DE = BD ( cmt )
=> BD < DC
Hay DC > DB ( đpcm )
Bài 3 :
A B C H K I
Gọi gia điểm của các đường trung trực với AB,Ac lần lượt là H ,K
Ta có :AH + HB = AB
AK + KC = AC
mà AB = AC ( tam giác ABC cân tại A)
=> AH + HB = AK + KC
mà CH và Bk lần lượt là trung trực của AB ,AC
=> AH = HB = AK = KC
Xét tam giác AHI và tam giác AKI có
AHI = AKI = 90
AH = AK ( cmt )
AI : cạnh chung
=> tam giác AHI = tam giác AKI ( canh huyền - cạnh gosc vuông )
=> ^HAI = ^KAI ( 2 góc tương ứng )
=> AI là tia phân giác của ^A
Vậy AI là tia phân giác của ^A
Bài 1
A B C D E H K
a, Vì tam giác ABC cân tại A => AB = AC và ^ABC = ^ACB
Ta có : ^ABC + ^ABD = 180 (kề bù )
^ACB + ^ ACE = 180 ( kề bù )
mà ^ABC = ^ACB
=> ^ABD = ^ ACE
Xét tam giác ABD và tam giác ACE có :
AB =AC ( tam giác ABc cân tại a )
^ABD = ^ACE ( cmt )
BD = CE ( gt)
=> tm giác ABD = tam giác ACE ( c.g.c)
=> ^ADB = ^AEC ( 2 góc tương ứng )
hay ^HDB = ^KEC
Xét tam giác HBD và tam gisc KEC có :
^DHB = ^EKC = 90
BD = CE (gt)
HDB = KEc ( cmt )
=> tam giác HBD = tam giác KCE ( cạnh huyền - góc nhọn )
=> HB = Ck ( 2 canh tương ứng )
Vậy HB = Ck
b,Xét tam giác ABH và tam giác ACk có
AHB = AKC = 90
HB = CK ( cmt )
AB = AC
=> tam giác ABH = tam giác ACK ( anh huyền - canh góc vuồng )
Vậy tam giác ABH =tam giác ACK
A B C D E _ _
Xét △ADB và △ADE có:
AB = AE (gt)
DAB = DAE (AD: phân giác BAE)
AD: chung
=> △ADB = △ADE (c.g.c)
=> DB = DE (2cạnh tương ứng)
=> △DBE cân tại D (đpcm)