K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 2 2020

A B C D E _ _

Xét △ADB và △ADE có:

AB = AE (gt)

DAB = DAE (AD: phân giác BAE)

AD: chung

=> △ADB = △ADE (c.g.c)

=> DB = DE (2cạnh tương ứng)

=> △DBE cân tại D (đpcm)

22 tháng 4 2020

A B C D E

a, xét tam giác ABD và tam giác AED có AB = AE (Gt)

AD chung

^BAD = ^EAD do AD Là pg của ^BAC (Gt)

=> tg ABD = tg AED (c-g-c)

=> BD = ED (Đn)

=> tam giác BED cân tại D (đn)

b, tg ABC có AD là pg => DC/AC = DB/AB (tc)

có AC > AB (GT) 

=> DC > DB

Bài làm

a) Xét tam giác ADB và tam giác ADE có: 

AB = AE ( gt )

\(\widehat{BAD}=\widehat{EAD}\)( Do AD phân giác )

AD chung 

=> Tam giác ADB = tam giác ADE ( c.g.c )

=> BD = DE 

=> Tam giác DBE cân ở D.

b) Kẻ BH là tia đối của tia BA.

Xét tam giác BAC có: \(\widehat{CBH}=\widehat{BAC}+\widehat{ACB}\)

=> \(\widehat{ACB}< \widehat{CBH}\) 

Hay \(\widehat{DCE}< \widehat{CBH}\)                                  (1) 

Vì tam giác ADB = tam giác ADE ( cmt )

=> \(\widehat{ABD}=\widehat{AED}\)

Mà \(\widehat{ABD}+\widehat{DBH}=180^0\)( Hai góc kề bù )

\(\widehat{AED}+\widehat{DEC}=180^0\)( Hai góc kề bù )

=> \(\widehat{DBH}=\widehat{DEC}\) 

Hay \(\widehat{CBH}=\widehat{DEC}\)                          (2) 

Từ (1) và (2) => \(\widehat{DCE}< \widehat{DEC}\)

Xét tam giác DEC có: 

\(\widehat{DCE}< \widehat{DEC}\)

=> DE < DC ( Qua hệ giữ cạnh và góc đối diện )

Mà DE = BD ( cmt )

=> BD < DC

Hay DC > DB ( đpcm )

25 tháng 2 2018

Bài 3 :

A B C H K I

Gọi gia điểm của các đường trung trực với AB,Ac lần lượt là H ,K

Ta có :AH + HB = AB 

          AK + KC = AC 

mà AB = AC ( tam giác ABC cân tại A)

=> AH + HB = AK + KC

mà  CH và Bk lần lượt là trung trực của AB ,AC 

=> AH = HB = AK = KC

Xét tam giác AHI và tam giác AKI có 

AHI = AKI = 90

AH = AK ( cmt )

AI : cạnh chung 

=> tam giác AHI = tam giác AKI ( canh huyền - cạnh gosc vuông )

=> ^HAI = ^KAI ( 2 góc tương ứng )

=> AI là tia phân giác của ^A

Vậy AI là tia phân giác của ^A

25 tháng 2 2018

Bài 1 

  A B C D E H K

a, Vì tam giác ABC cân tại A => AB = AC và ^ABC = ^ACB

Ta có : ^ABC + ^ABD = 180 (kề bù )

           ^ACB + ^ ACE = 180 ( kề bù )

mà ^ABC = ^ACB 

=> ^ABD = ^ ACE 

Xét tam giác ABD và tam giác ACE có :

AB =AC ( tam giác ABc cân tại a )

^ABD = ^ACE ( cmt )

BD = CE ( gt)

=> tm giác ABD = tam giác ACE ( c.g.c)

=> ^ADB = ^AEC ( 2 góc tương ứng ) 

hay ^HDB = ^KEC 

Xét tam giác HBD và tam gisc KEC có :

^DHB = ^EKC = 90 

BD =  CE (gt)

HDB = KEc ( cmt )

=> tam giác HBD = tam giác KCE ( cạnh huyền - góc nhọn )

=> HB = Ck ( 2 canh tương ứng )

Vậy HB = Ck

b,Xét tam giác ABH và tam giác ACk có 

AHB = AKC = 90

HB = CK ( cmt )

AB = AC 

=> tam giác ABH = tam giác  ACK ( anh huyền - canh góc vuồng )

Vậy tam giác ABH =tam giác ACK

14 tháng 2 2016

moi hok lop 6