K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 1 2020

2.

Giả sử \(MA\) là đoạn thẳng bé nhất.

+ Xét \(\Delta AMB\) có:

\(MA< MB+AB\) (theo bất đẳng thức trong tam giác) (1).

+ Xét \(\Delta AMC\) có:

\(MA< MC+AC\) (theo bất đẳng thức trong tam giác) (2).

+ Xét \(\Delta MBC\) có:

\(BC< MB+MC\) (theo bất đẳng thức trong tam giác) (3).

Cộng theo vế (1) vào (2) ta được:

\(MA+MA< MB+MC+AB+AC\)

\(\Rightarrow2MA< MB+MC+AB+AC\)

\(\Rightarrow MA< \frac{MB+MC+AB+AC}{2}.\)

\(\Delta ABC\) đều (gt).

\(\Rightarrow AB=AC=BC\) (tính chất tam giác đều).

\(\Rightarrow AB+AC=2BC\)

\(\Rightarrow MA< \frac{MB+MC+2BC}{2}\)

\(\Rightarrow MA< \frac{MB+MC}{2}+BC\) (4).

Từ (3) \(\Rightarrow\frac{MB+MC}{2}+BC< MB+MC\) (5).

Từ (4) và (5) \(\Rightarrow MA< MB+MC\left(đpcm\right).\)

Vậy trong 3 đoạn thẳng MA, MB, MC mỗi đoạn không lớn hơn tổng của 2 đoạn thẳng kia.

Chúc bạn học tốt!

16 tháng 8 2015

 


M∈ nửa mặt phẳng bờ AC không chứa B.



-Kẻ tia Cx sao cho tia Cx tạo với đoạn BC một góc bằng góc ACMˆ.

-Trên Cx lấy E sao cho CE=CM(1), ta được hình trên

Dễ dàng CM: BM+MC>MA, BM+MA>MC (Bạn nào muốn CM thì áp dụng tính chất cạnh và góc trong một tam giác)

Bây giờ ta sẽ chứng minh MA+MC≥MB

CM:ΔBEC=ΔAMC(c.g.c)

⇒BE=AM(2)

Ta có:

BCEˆ=MCAˆ(ΔBEC=ΔAMC)(3)

Mà: BCEˆ+ACEˆ=60o(4)

Từ (1), (3), (4):

⇒ΔECM đều

⇔MC=ME(5)

Theo bất đẳng thức trong một tam giác, ta có:

BE+ME>BM(6)

Từ (2), (5), (6):

⇒MA+MC≥MB

Dấu '=' xảy ra khi;

MA=MC

14 tháng 7 2018

Cho M nằm trong tam giác đều ABC chứng minh 1 trong 3 đoạn thẳng MA ,MB ,MC nhỏ hơn tổng 2 đoạn thẳng còn lại

Xem tại : https://h.vn/hoi-dap/question/189392.html

a) Xét ΔAMB và ΔAMC có

AB=AC(gt)

MB=MC(M là trung điểm của BC)

AM chung

Do đó: ΔAMB=ΔAMC(c-c-c)

b) Sửa đề: AM=MD

Xét ΔAMC và ΔDMB có 

AM=DM(gt)

\(\widehat{AMC}=\widehat{DMB}\)(hai góc đối đỉnh)

MC=MB(M là trung điểm của BC)

Do đó: ΔAMC=ΔDMB(c-g-c)

⇒AC=DB(Hai cạnh tương ứng)

c) Ta có: ΔAMC=ΔDMB(cmt)

nên \(\widehat{ACM}=\widehat{DBM}\)(hai góc tương ứng)

mà \(\widehat{ACM}\) và \(\widehat{DBM}\) là hai góc ở vị trí so le trong

nên AC//BD(Dấu hiệu nhận biết hai đường thẳng song song)

14 tháng 1 2021

o

AA
6 tháng 12 2017

Bạn tham khảo ở đây

Câu hỏi của Công chúa thủy tề - Toán lớp 7 - Học toán với OnlineMath

1) Cho tam giác cân ABC (AB=AC). Trên cạnh BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD=CE. Các đường thẳng vuông góc với BC kẻ từ D và E cắt AB, AC lần lượt ở M,N. DM=EN, đường thẳng BC cắt MN tại trung điểm I của MN. Chứng minh rằng: đường thẳng vuông góc vs MN tại I luôn đi qua một điểm cố định khi D thay đổi trên cạnh BC.2)Cho tam giác ABC vuông tại A, K là trung điểm của...
Đọc tiếp

1) Cho tam giác cân ABC (AB=AC). Trên cạnh BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD=CE. Các đường thẳng vuông góc với BC kẻ từ D và E cắt AB, AC lần lượt ở M,N. DM=EN, đường thẳng BC cắt MN tại trung điểm I của MN. Chứng minh rằng: đường thẳng vuông góc vs MN tại I luôn đi qua một điểm cố định khi D thay đổi trên cạnh BC.

2)Cho tam giác ABC vuông tại A, K là trung điểm của cạnh BC. Qua K kẻ đường thẳng vuông góc vs AK, đường này cắt các đường thẳng AB và AC lần lượt ở D và E. Gọi I là trung điểm của DE.
a)Chứng minh rằng: AI vuông góc vs BC
b) Có thể nói DE nhỏ hơn BC được không? Vì sao?

3) Cho tam giác ABC (AB>AC), M là trung điểm của BC. Đường thẳng đi qua M và vuông góc vs tia phân giác của góc A tại H cắt hai tia AB, AC lần lượt tại E và F. CMR:
a) EF^2/4 +AH^2=AE^2
b) 2BME=ACB-B
c) BE=CF
4)Cho tam giác ABC có góc B và C là 2 góc nhọn. Trên tia đối của tia AB lấy điểm D sao cho AD=AB, trên tia đối của tia AC lấy điểm E sao cho AE=AC. M là trung điểm của BE, N là trung điểm CB. Ax là tia bất kỳ nằm gưac 2 tia AB và AC. Gọi H, K lần lượt là hình chiếu của B và C trên tia Ax. Xác định vị trí của tia Ax để tổng BH+CK có giá trị lớn nhất.

5)Cho tam giác ABC có 3 góc nhọn, đường cao AH, ở miền ngoài của tam giác ABC ta vẽ các tam giác vuông cân ABE và ACF đều nhận A làm đỉnh góc vuông. Kẻ EM, FN cùng vuông
góc vs AH (M,N thuộc AH)
a) CM: EM+HC=NH
b) CM: EN // FM

3
13 tháng 7 2015

bạn đăng từng bài lên 1 đi

mik giải dần cho

30 tháng 1 2017

dễ mà bn

Bài 1: Tam giác ABC. Gọi D,E lần lượt là trung điểm của BC,AC,AB. Lấy I,K thuộc BC sao cho BI=IK=KC. Gọi M là giao điểm AI và DF, N là giao điểm AK và DE. Cmr: MN//BCBài 2: Cho góc nhọn xOy. Trên tia Ox lấy A,B (A thuộc OB), và trên tia Oy lấy C,D (C thuộc OD). Gọi M,N,P,Q lần lượt là trung điểm của AC,AD,BD,BC. Cho góc xOy=90 độ, so sánh MP và NQ.Bài 3: Cho đoạn thẳng AB, lấy M bất kì thuộc AB. Trên cùng một nmp...
Đọc tiếp

Bài 1: Tam giác ABC. Gọi D,E lần lượt là trung điểm của BC,AC,AB. Lấy I,K thuộc BC sao cho BI=IK=KC. Gọi M là giao điểm AI và DF, N là giao điểm AK và DE. Cmr: MN//BC

Bài 2: Cho góc nhọn xOy. Trên tia Ox lấy A,B (A thuộc OB), và trên tia Oy lấy C,D (C thuộc OD). Gọi M,N,P,Q lần lượt là trung điểm của AC,AD,BD,BC. Cho góc xOy=90 độ, so sánh MP và NQ.

Bài 3: Cho đoạn thẳng AB, lấy M bất kì thuộc AB. Trên cùng một nmp bờ AB vẽ các tam giác đều AMC<BMD. Gọi E,F,I,K lần lượt là trung điểm của CM,CB,DM,DA. Cmr:

a. EF//KI. b.EI=KF; c.KF=CD/2

Bài 4:Cho tam giác ABCD. Trên tia đối tia BA lấy D, trên tia đối tia CA lấy E sao cho BD=CE. Gọi M,N,P,Q lần lượt là trung điểm của BC,DE,BE,CD. Cmr:

a. tan giác PMQ cân; b.MN vuông góc với PQ; c. Gọi Ax là tia phân giác góc BAC, Cm: Ax//MN

 

Cảm ơn các bạn giúp mình nhiều, Cảm ơn ạ!!

0