Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho tam giác ABC có góc B bằng 30 độ.Dựng phía ngoài tam giác ACD đều. Chứng minh \(BD^2=AB^2+BC^2\)
a: góc CBF=góc DBF
=>sđ cung FC=sđ cung FD
=>sđ cung BCF/2=1/2(sđ cung BC+sđ cung FD)
=>góc ABF=góc AEB
=>ΔAEB cân tại A
b: góc ABC+góc CBF=góc CEB
góc BEC=góc EBD+góc EDB
=>góc CBE+góc CBA=góc EDB+góc EBD
mà góc BDC=góc CBA
nên góc CBE=góc EBD
=>BE là phân giác của góc CBF
c: Xét ΔBDF và ΔDEF có
góc F chung
góc FBD=góc FDE
=>ΔBDF đồng dạng với ΔDEF
=>FD/FE=FB/FD
=>FD^2=FE*FB
a:Xet ΔAHE và ΔAHB có
AH chung
góc HAB=góc HAE
góc AHB=góc AHE
=>ΔAHE=ΔAHB
=>AB=AE
=>ΔABE cân tạiA
b: góc ABC+góc CBF=góc CEB
góc BEC=góc EBD+góc EDB
=>góc CBE+góc CBA=góc EBD+góc EDB
mà góc BDC=góc CBA
nên góc CBE=góc EBD
=>BE là phân giac của góc CBD
Bài 1. câu 3
Kẻ đường kính MK của (O), cắt CD tại I => góc MAK = 900 (góc nội tiếp chắn nửa (O))
Tam giác AHM vuông tại H có đường cao HD => MH2 = MA.MD
tương tự MH2 = MB.MC => MA.MD = MB.MC => MD/MB = MC/MA và góc AMB chung => tam giác MCD đồng dạng tam giác MAB
=> góc MDC = góc MBA mà góc MBA = góc MKA (cùng chắn cung MA) => góc MDC = góc MKA hay gócMDI = góc MKA
tam giác MDI và tam giác MKA có góc M chung và góc MDI = góc MKA (cmt) nên đồng dạng => góc MIA = MAK = 900
=> MK vuông góc CD hay MO vuông góc CD
Bài 2. câu 3 : Tỉ số \(\frac{DE}{BC}=\frac{1}{\sqrt{2}}\)