Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì tam giác ABC vuông cân tại A nên ta có đường cao BA (đáy AC) = 5, đường cao AC (đáy AB) = 5
Kẻ đường cao AH sao cho AH cắt BC tại H.
Do tam giác ABC cân tại A nên AH vừa là đường cao, vừa là phân giác => Góc HAB = Góc HAC
Xét tam giác BAH và tam giác CAH có:
Góc B = Góc C (tam giác ABC cân)
BA = CA
góc HAB = góc HAC
=> tam giác BAH = tam giác CAH (g.c.g)
=> BH = CH = 1/2 BC = 4
Áp dụng định lí Py-ta-go cho tam giác BAH, ta có:
AH2 + BH2 = AB2
AH2 + 16 = 20
Suy ra, AH = 2
Cho các điểm như hình vẽ. Do ABC cân nên BH = HC = 4. Vậy \(\text{AH = }\sqrt{AB ^2-BH^2}=\sqrt{5^2-4^2}=3\)
Ta thấy \(\frac{KC}{BC}=sinABC=\frac{AH}{AB}=\frac{3}{5}\Rightarrow CK=\frac{8.3}{5}=4,8\)
Do tam giác ABC cân tại A nên BI = CK = 4,8.
tam giác AHC đồng dạng tam giác BKC ta được :AH/AC = BK / BC =>AC = 5/3 HC ( vì BC =2 HC ) ( 1 )
lại có AC 2 = AH2 + HC2 => AC2 = 100 +HC2 ( 2 )
từ 1 và 2 có hệ
giải được HC =7,5 => BC =15
Vì tam giác ABC là tam giác cân nên góc B = góc C = \(\frac{180^o-48^o}{2}=66^o\)
Ta có AB = AC = \(\frac{AH}{sinB}=\frac{13}{sin66^o}\) ( cm )
BC = 2HB = \(2.\frac{AH}{\tan B}=\frac{26}{\tan66^o}\) ( cm )
Suy ra chu vi hình tam giác ABC là : AB + AC + BC = \(\frac{26}{\tan66^o}+\frac{26}{\tan66^o}\) ( cm )
Bạn hiểu chăng ?
Chúc bạn học tốt
Gọi a, b, c, h là độ dài hai cạnh góc vuông, cạnh huyền và đường cao
Có \(c=\sqrt{a^2+b^2},ab=ch\Leftrightarrow h=\dfrac{ab}{c}\)
Có \(\left\{{}\begin{matrix}a+b=70\\c+h=74\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}a+b=70\\\sqrt{a^2+b^2}+\dfrac{ab}{\sqrt{a^2+b^2}}=74\end{matrix}\right.\)
\(\Leftrightarrow\)\(\left\{{}\begin{matrix}a+b=70\\a^2+b^2+ab=74\sqrt{a^2+b^2}\end{matrix}\right.\)
PT dưới tương đương: \(\left(a+b\right)^2-ab=74\sqrt{\left(a+b\right)^2-2ab}\)
\(\Leftrightarrow ab=1200\)
Suy ra \(\left\{{}\begin{matrix}a+b=70\\ab=1200\end{matrix}\right.\), a và b là hai nghiệm của pt \(x^2-70x+1200=0\)
\(\Leftrightarrow a=30,b=40\)
Vậy độ dài các cạnh góc vuông, cạnh huyền và đường cao là 30, 40, 50, 24.
. Bán kính đường tròn ngoại tiếp tam giác ABC có độ dài bằng 15
=>AO=OB=OC=15
xét tam giác AHO vuông tai H
=>HO=căn(15^2-14.4^2)=4.2
=>BH =BO-HO=15-4.2=10.8
Xét tam giác ABH vuông tại H
=>AB=căn(14.4^2+10.8^2)=18
=>BC=2OC=2*15=30
=>AC=căn(30^2-18^2)=24
=>AB+AC=18+24=42
Gọi độ dài 3 cạnh DABC lần lượt là a,b,c. Đường cao hạ từ các đỉnh A,B,C là x,y,z. Bán kính đường tròn nội tiếp tam giác ABC = 1. Khi đó ta có
SABC=1/2ax=1/2by=1/2cz=1/2(a+b+c)r
=> ax = by = cz = a+b+c [*]
ta có:
ax = by = cz => a: (1/ x)= b:(1/ y)=c:(1/z)
=> (a+b+c): (1/x+1/y+1/z) = a+b+c
=> (1/x+1/y+1/z) = 1
Giả sử: 0 ≤ x ≤ y ≤ z =>1/x ≥1/y ≥ 1/z => 3/x ≤ 1 => x ≤ 3
Thử từng trường hợp:
*x=1. => Loại
*x=2 =>1/y+1 / z= ½. Mà x,y ϵ Z
=>y,z ϵ {(4,4);(3;6)}
y = z = 4 => 2a = 4b = 4c Áp dụng BDT tam giác vào tam giác ABH thấy ko thỏa mãn=>loại
y=3;z=4⇒2a=3b=4c (loại)
*x=3
x = y = z = 3 => a=b=c=> tam giácABC:đều (đpcm).