K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 3 2016

1. Cho phân số a/b, b>a. C/m :

a) Nếu a/b < 1 thì a+1/b+1 > a/b

b) Nếu a/b > 1 thì a/b > a+1/b+1

2. Tính :

3/4 + 3/12 + 3/24 + 3/40 + 3/60 + 3/84 + 3/112 + 3/144 + 1/180

Toán lớp 6

AH
Akai Haruma
Giáo viên
2 tháng 12 2023

Bài 1:

a. $=(-25)(-4)(-35)=100(-35)=-3500$

b. $=16-10=6$

c. $=180-(-16)-(-36)=180+16+36=232$

d. $=250-200:[1(-3)^2+(-8)]$

$=250-200:(9-8)=250-200=50$

AH
Akai Haruma
Giáo viên
2 tháng 12 2023

2.

$60+2(12-x)=-48$

$2(12-x)=60-(-48)=60+48=108$

$12-x=108:2=54$

$x=12-54=-42$
 

AH
Akai Haruma
Giáo viên
29 tháng 11 2023

Bài 1:

a. $=(-25)(-4)(-35)=100(-35)=-3500$

b. $=16-10=6$

c. $180-(-16)-(-36)=180+16+36=196+36=232$

d. $=250-200:[2000.(-3).2-6]$

$=250-200:[2000.(-6)+(-6)]$

$=250-200:[(-6)(2000+1)]=250-200[(-6).2001]$

$=250+200.6.2001=250+2401200=2401450$

AH
Akai Haruma
Giáo viên
29 tháng 11 2023

Bài 2:

$60+2(12-x)=-48$

$2(12-x)=-48-60=-108$
$12-x=-108:2=-54$

$x=12-(-54)=66$

1)Số 100! khi phân tích ra thừa số nguyên tố có dạng :100!=2^x.3^y.5^z.7^t ... với x;y;z;t thuộc Nsao.Tìm x,y,z,t , ...2)Cho A = 1! +2! +3! +4! +5! +6! +...+2015! 1/ Tìm chữ số tận cùng của A 2/ Chứng minh A không phải là số chính phương 3/ Chứng minh A là hợp số.3)a chia hết cho 3. Số b ko chia hết cho 3 . nhưng a+b lại chia hết cho 3 thì số a và b là bao nhiêu4)tìm số tự nhiên  a biết rằng nếu lấy 264 chia cho a...
Đọc tiếp

1)Số 100! khi phân tích ra thừa số nguyên tố có dạng :

100!=2^x.3^y.5^z.7^t ... với x;y;z;t thuộc Nsao.

Tìm x,y,z,t , ...

2)Cho A = 1! +2! +3! +4! +5! +6! +...+2015! 
1/ Tìm chữ số tận cùng của A 
2/ Chứng minh A không phải là số chính phương 
3/ Chứng minh A là hợp số.

3)a chia hết cho 3. Số b ko chia hết cho 3 . nhưng a+b lại chia hết cho 3 thì số a và b là bao nhiêu

4)tìm số tự nhiên  a biết rằng nếu lấy 264 chia cho a thì dư 24 nếu lấy 363 chia cho a thì dư 43 

5)Tính giá trị biểu thức A = 1^3 + 2^3 + 3^3 + ... + 100^3.

6)Tinh nhanh : A = 1^2+2^2+3^2+...+100^2

7)Tính giá trị biểu thức A = 1.2.3 + 3.4.5 + 5.6.7 + … + 99.100.101.

8)tìm số tự nhiên lớn nhất có 3 chữ số sao cho số đó chia cho 30 thì dư 7 và chia cho 40 thì dư 1

9)Tính tổng các số tự nhiên n<20 biết rằng 4mũ n - 1 chi hết cho 5

10)tìm n sao cho : 3n +40 chia hết n+3

11) tìm n : n mũ 2+36 chia hết n -1

12) Tìm hai số a và b biết ab bằng 25200 và (a;b) = 60

13)Tìm hai số tự nhiên a và b biết (a;b) = 15 và [a;b] = 165

14) Chứng minh rằng: Nếu (7a + 11b) ⋮ 3 thì (2a + b) ⋮ 3.

em thanks mọi người trước

XIN ONLINE MATH ĐỪNG TRỪ ĐIỂM EM ĐANG CẦN GẤP

0
Bài 1: Tính hợp lí1/ (-37) + 14 + 26 + 372/ (-24) + 6 + 10 + 243/ 15 + 23 + (-25) + (-23)4/ 60 + 33 + (-50) + (-33)5/ (-16) + (-209) + (-14) + 2096/ (-12) + (-13) + 36 + (-11)7/ -16 + 24 + 16 – 348/ 25 + 37 – 48 – 25 – 379/ 2575 + 37 – 2576 – 2910/ 34 + 35 + 36 + 37 – 14 – 15 – 16 – 17Bài 2: Bỏ ngoặc rồi tính1/ -7264 + (1543 + 7264)2/ (144 – 97) – 1443/ (-145) – (18 – 145)4/ 111 + (-11 + 27)5/ (27 + 514) – (486 – 73)6/ (36 + 79) + (145 – 79 –...
Đọc tiếp

Bài 1: Tính hợp lí
1/ (-37) + 14 + 26 + 37
2/ (-24) + 6 + 10 + 24
3/ 15 + 23 + (-25) + (-23)
4/ 60 + 33 + (-50) + (-33)
5/ (-16) + (-209) + (-14) + 209
6/ (-12) + (-13) + 36 + (-11)
7/ -16 + 24 + 16 – 34
8/ 25 + 37 – 48 – 25 – 37
9/ 2575 + 37 – 2576 – 29
10/ 34 + 35 + 36 + 37 – 14 – 15 – 16 – 17

Bài 2: Bỏ ngoặc rồi tính
1/ -7264 + (1543 + 7264)
2/ (144 – 97) – 144
3/ (-145) – (18 – 145)
4/ 111 + (-11 + 27)
5/ (27 + 514) – (486 – 73)
6/ (36 + 79) + (145 – 79 – 36)
7/ 10 – [12 – (- 9 - 1)]
8/ (38 – 29 + 43) – (43 + 38)
9/ 271 – [(-43) + 271 – (-17)]
10/ -144 – [29 – (+144) – (+144)]

Bài 3: Tính tổng các số nguyên x biết:
1/ -20 < x < 21
2/ -18 ≤ x ≤ 17
3/ -27 < x ≤ 27
4/ │x│≤ 3
5/ │-x│< 5

Bài 4: Tính tổng
1/ 1 + (-2) + 3 + (-4) + . . . + 19 + (-20)
2/ 1 – 2 + 3 – 4 + . . . + 99 – 100
3/ 2 – 4 + 6 – 8 + . . . + 48 – 50
4/ – 1 + 3 – 5 + 7 - . . . . + 97 – 99
5/ 1 + 2 – 3 – 4 + . . . . + 97 + 98 – 99 - 100

Bài 5: Tính giá trị của biểu thức
1/ x + 8 – x – 22 với x = 2010
2/ - x – a + 12 + a với x = - 98 ; a = 99
3/ a – m + 7 – 8 + m với a = 1 ; m = - 123
4/ m – 24 – x + 24 + x với x = 37 ; m = 72
5/ (-90) – (y + 10) + 100 với p = -24

Bài 6: Tìm x
1/ -16 + 23 + x = - 16
2/ 2x – 35 = 15
3/ 3x + 17 = 12
4/ │x - 1│= 0
5/ -13 .│x│ = -26

Bài 7: Tính hợp lí
1/ 35. 18 – 5. 7. 28
2/ 45 – 5. (12 + 9)
3/ 24. (16 – 5) – 16. (24 - 5)
4/ 29. (19 – 13) – 19. (29 – 13)
5/ 31. (-18) + 31. ( - 81) – 31
6/ (-12).47 + (-12). 52 + (-12)
7/ 13.(23 + 22) – 3.(17 + 28)
8/ -48 + 48. (-78) + 48.(-21)

Bài 8: Tính
1/ (-6 – 2). (-6 + 2)
2/ (7. 3 – 3) : (-6)
3/ (-5 + 9) . (-4)
4/ 72 : (-6. 2 + 4)
5/ -3. 7 – 4. (-5) + 1
6/ 18 – 10 : (+2) – 7
7/ 15 : (-5).(-3) – 8
8/ (6. 8 – 10 : 5) + 3. (-7)

Bài 9: So sánh
1/ (-99). 98 . (-97) với 0
2/ (-5)(-4)(-3)(-2)(-1) với 0
3/ (-245)(-47)(-199) với
123.(+315)
4/ 2987. (-1974). (+243). 0 với 0
5/ (-12).(-45) : (-27) với │-1│

Bài 13: Tìm x:
1/ (2x – 5) + 17 = 6

Bài 14: Tìm x
1/ x.(x + 7) = 0

2/ 10 – 2(4 – 3x) = -4
3/ - 12 + 3(-x + 7) = -18
4/ 24 : (3x – 2) = -3
5/ -45 : 5.(-3 – 2x) = 3

2/ (x + 12).(x-3) = 0
3/ (-x + 5).(3 – x ) = 0
4/ x.(2 + x).( 7 – x) = 0
5/ (x - 1).(x +2).(-x -3) = 0

Bài 15: Tìm
1/ Ư(10) và B(10)
2/ Ư(+15) và B(+15)
3/ Ư(-24) và B(-24)
4/ ƯC(12; 18)
5/ ƯC(-15; +20)

Bài 16: Tìm x biết
1/ 8 x và x > 0
2/ 12 x và x < 0
3/ -8 x và 12 x
4/ x 4 ; x (-6) và -20 < x < -10
5/ x (-9) ; x (+12) và 20 < x < 50

Bài 17: Viết dười dạng tích các tổng sau:
1/ ab + ac
2/ ab – ac + ad
3/ ax – bx – cx + dx
4/ a(b + c) – d(b + c)
5/ ac – ad + bc – bd
6/ ax + by + bx + ay

Bài 18: Chứng tỏ
1/ (a – b + c) – (a + c) = -b
2/ (a + b) – (b – a) + c = 2a + c
3/ - (a + b – c) + (a – b – c) = -2b
4/ a(b + c) – a(b + d) = a(c – d)
5/ a(b – c) + a(d + c) = a(b + d)

Bài 19: Tìm a biết
1/ a + b – c = 18 với b = 10 ; c = -9
2/ 2a – 3b + c = 0 với b = -2 ; c = 4
3/ 3a – b – 2c = 2 với b = 6 ; c = -1
4/ 12 – a + b + 5c = -1 với b = -7 ; c = 5
5/ 1 – 2b + c – 3a = -9 với b = -3 ; c = -7

Bài 20: Sắp xếp theo thứ tự
* tăng dần
1/ 7; -12 ; +4 ; 0 ; │-8│; -10; -1
2/ -12; │+4│; -5 ; -3 ; +3 ; 0 ; │-5│
* giảm dần
3/ +9 ; -4 ; │-6│; 0 ; -│-5│; -(-12)
4/ -(-3) ; -(+2) ; │-1│; 0 ; +(-5) ; 4 ; │+7│; -8

26
5 tháng 6 2021

mình giải từng bài nhá

hả đơn giản

30 tháng 7 2017

1, Gọi x là số học sinh khối 6 của trường (xN*); 200 ≤ x ≤ 400 => 197 ≤ x – 3 ≤ 397

x – 3 chia hết cho cả 12; 15 và 18 => x – 3 ∈ BC(12;15;18); 12 =  2 2 . 3 ; 15 = 3.5; 18 =  2 . 3 2

BCNN(12;15;18) =  2 2 . 3 2 . 5  = 180

x – 3BC(12;15;18) = B(180) = {0;180;360;540;...}  197 ≤ x – 3 ≤ 397

=> x – 3 ∈ {360} => x ∈ {363} (thỏa mãn 200 ≤ x ≤ 400)

2, a, 24 = 2 3 . 3

84 =  2 2 . 3 . 7

180 =  2 2 . 3 2 . 5

ƯCLN(24;84;180) =  2 2 . 3 = 12

b, BCNN(84;180) =  2 2 . 3 2 . 5 . 7 = 1260

Bài 1: 

a: -8/12<0<-3/-4

b: -56/24<0<7/3

c: 4/25<1<15/13

=>-4/25>-15/13

Bài 2: 

a: =-60/45=-4/3

b: =4/15-3/2-8/5=8/30-45/30-48/30=-85/30=-17/6

11 tháng 12 2022

b

 

 
a  
c  

 

18 tháng 4 2020

hộ C1: Tìm x biết

a 2x-35=15

=>2x=15+35=50

=>x=25

b 3x+17=2

=>3x=2-17=-15

=>x=5

c x+3/15=1/3

x=1/3-3/15=2/15

d x-12/4=1/2

x=1/2+12/4=7/2

18 tháng 4 2020

a. 2x-35=15

    2x=15+35

    2x=50

      x=50:2

      x=25

Vậy x=25

b. 3x+17=2

    3x=2-17

    3x=-15

      x=-15:3

      x=-5

Vậy x=-5

c. \(\frac{x+3}{15}=\frac{1}{3}\)

\(\Rightarrow3x+9=15\)

      \(3x=15-9\)

      \(3x=6\)

         \(x=6:3\)

         \(x=3\)

Vậy x=3

d. \(\frac{x-12}{4}=\frac{1}{2}\)

\(\Rightarrow2x-24=4\)

      \(2x=4+24\)

      \(2x=28\)

         \(x=28:2\)

         \(x=14\)

Vậy x=14

21 tháng 5 2015

Cậu search mạng chứ gì

Bài 1. Gọi 3 số nguyên liên tiếp là a-1; a; a+1 (a thuộc Z) 
Theo bài ra: a - 1 + a + a + 1 là số lẻ hay 3a là số lẻ 
=> a - 1 và a + 1 là số chẵn. Trong hai số chẵn liên tiếp, tồn tại một số chia hết cho 4, số còn lại chia hết cho 2. Do đó (a - 1)(a + 1) chia hết cho 8. 
Trong ba số nguyên liên tiếp, luôn tồn tại một số chia hết cho 3. Vì vậy tích (a-1)a(a+1) chia hết cho 3. 
Mà (a - 1)(a + 1) chia hết cho 8 nên tích (a - 1)a(a + 1) chia hết cho 24. 
Vậy đccm. 

Bài 2. Ta có: ab + cd + ad + bc = (ab + ad) + (bc + cd) = a(b + d) + c(b + d) = (a + c)(b + d). 
Do đó ab + cd + ad + bc chia hết cho a + c với a khác -c. 

Bài 3.a) x có 100 số hạng, chia thành 25 nhóm, mỗi nhóm 4 số, ta có: 
x = (1 - 3 + 3^2 - 3^3) + (3^4 - 3^5 + 3^6 - 3^7) + ... + (3^96 - 3^97 + 3^98 - 3^99) 
= (1 - 3 + 3^2 - 3^3) + (3^4)(1 - 3 + 3^2 - 3^3) + ... + 3^96(1 - 3 + 3^2 - 3^3) 
= (1 - 3 + 3^2 - 3^3)(1 + 3^4 + ... + 3^96) 
= -20(1 + 3^4 + ... + 3^96) chia hết cho 20. 
Vậy x chia hết cho 20 (đccm) 
b, Ta có: x = 1 - 3 + 3^2 - 3^3 + ... + 3^98 - 3^99 
=> 3x = 3 - 3^2 + 3^3 - 3^4 + ... + 3^99 - 3^100 
=> 3x + x = 1 - 3^100 
=> 4x = (1 - 3^100) 
=> x = (1 - 3^100)/4 
c, Vì x = (1 - 3^100)/4 mà x = 1 - 3 + 3^2 - 3^3 + ... + 3^98 - 3^99 là số nguyên 
nên (1 - 3^100)/ 4 là số nguyên => 1 - 3^100 chia hết cho 4 
=> 1 đồng dư với 3^100 theo môđun 4 hay 3^100 chia 4 dư 1(đccm) 

Bài 4. Ta có: a^2 , b^2 và c^2 là các số chính phương nên a^2, b^2 và c^2 chia 3 dư 0 hoặc 1. 
Nếu trong 3 số a^2, b^2 và c^2 không có số nào chia hết cho 3 thì mỗi số đó đều chia 3 dư 1. 
Do đó tổng a^2 + b^2 + c^2 phải chia hết cho 3. Điều này trái với đầu bài vì a^2 + b^2 + c^2 = 2051, là số chia 3 dư 2. 
Điều này có nghĩa: trong ba số a^2, b^2, c^2 có một số chia hết cho 3. Mà 3 là số nguyên tố nên trog ba số a, b, c có một số chia hết cho 3 => abc chia hết cho 3

21 tháng 5 2015

Bài 1. Gọi 3 số nguyên liên tiếp là a-1; a; a+1 (a thuộc Z) 
Theo bài ra: a - 1 + a + a + 1 là số lẻ hay 3a là số lẻ 
=> a - 1 và a + 1 là số chẵn. Trong hai số chẵn liên tiếp, tồn tại một số chia hết cho 4, số còn lại chia hết cho 2. Do đó (a - 1)(a + 1) chia hết cho 8. 
Trong ba số nguyên liên tiếp, luôn tồn tại một số chia hết cho 3. Vì vậy tích (a-1)a(a+1) chia hết cho 3. 
Mà (a - 1)(a + 1) chia hết cho 8 nên tích (a - 1)a(a + 1) chia hết cho 24. 
Vậy đccm. 

Bài 2. Ta có: ab + cd + ad + bc = (ab + ad) + (bc + cd) = a(b + d) + c(b + d) = (a + c)(b + d). 
Do đó ab + cd + ad + bc chia hết cho a + c với a khác -c. 

Bài 3.a) x có 100 số hạng, chia thành 25 nhóm, mỗi nhóm 4 số, ta có: 
x = (1 - 3 + 3^2 - 3^3) + (3^4 - 3^5 + 3^6 - 3^7) + ... + (3^96 - 3^97 + 3^98 - 3^99) 
= (1 - 3 + 3^2 - 3^3) + (3^4)(1 - 3 + 3^2 - 3^3) + ... + 3^96(1 - 3 + 3^2 - 3^3) 
= (1 - 3 + 3^2 - 3^3)(1 + 3^4 + ... + 3^96) 
= -20(1 + 3^4 + ... + 3^96) chia hết cho 20. 
Vậy x chia hết cho 20 (đccm) 
b, Ta có: x = 1 - 3 + 3^2 - 3^3 + ... + 3^98 - 3^99 
=> 3x = 3 - 3^2 + 3^3 - 3^4 + ... + 3^99 - 3^100 
=> 3x + x = 1 - 3^100 
=> 4x = (1 - 3^100) 
=> x = (1 - 3^100)/4 
c, Vì x = (1 - 3^100)/4 mà x = 1 - 3 + 3^2 - 3^3 + ... + 3^98 - 3^99 là số nguyên 
nên (1 - 3^100)/ 4 là số nguyên => 1 - 3^100 chia hết cho 4 
=> 1 đồng dư với 3^100 theo môđun 4 hay 3^100 chia 4 dư 1(đccm) 

Bài 4. Ta có: a^2 , b^2 và c^2 là các số chính phương nên a^2, b^2 và c^2 chia 3 dư 0 hoặc 1. 
Nếu trong 3 số a^2, b^2 và c^2 không có số nào chia hết cho 3 thì mỗi số đó đều chia 3 dư 1. 
Do đó tổng a^2 + b^2 + c^2 phải chia hết cho 3. Điều này trái với đầu bài vì a^2 + b^2 + c^2 = 2051, là số chia 3 dư 2. 
Điều này có nghĩa: trong ba số a^2, b^2, c^2 có một số chia hết cho 3. Mà 3 là số nguyên tố nên trog ba số a, b, c có một số chia hết cho 3 => abc chia hết cho 3