\(\left(\dfrac{1}{\sqrt{a}-1}-\dfrac{2\sqrt{a}}{a-1}+\dfrac{\sqrt{a}}{a+1}\right):\df...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Sửa đề: \(P=\left(\dfrac{1}{\sqrt{a}-1}-\dfrac{2\sqrt{a}}{a-1}+\dfrac{\sqrt{a}}{\sqrt{a}+1}\right):\dfrac{\sqrt{a}}{\sqrt{a}+1}\)

ĐKXĐ: \(\left\{{}\begin{matrix}x>0\\x\ne1\end{matrix}\right.\)

a) Ta có: \(P=\left(\dfrac{1}{\sqrt{a}-1}-\dfrac{2\sqrt{a}}{a-1}+\dfrac{\sqrt{a}}{\sqrt{a}+1}\right):\dfrac{\sqrt{a}}{\sqrt{a}+1}\)

\(=\left(\dfrac{\sqrt{a}+1}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}-\dfrac{2\sqrt{a}}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}+\dfrac{\sqrt{a}\left(\sqrt{a}-1\right)}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}\right):\dfrac{\sqrt{a}}{\sqrt{a}+1}\)

\(=\dfrac{\sqrt{a}+1-2\sqrt{a}+a-\sqrt{a}}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}:\dfrac{\sqrt{a}}{\sqrt{a}+1}\)

\(=\dfrac{a-2\sqrt{a}+1}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\cdot\dfrac{\sqrt{a}+1}{\sqrt{a}}\)

\(=\dfrac{\left(\sqrt{a}-1\right)^2}{\sqrt{a}\left(\sqrt{a}-1\right)}\)

\(=\dfrac{\sqrt{a}-1}{\sqrt{a}}\)

b) Để \(P< \dfrac{1}{2}\) thì \(P-\dfrac{1}{2}< 0\)

\(\Leftrightarrow\dfrac{\sqrt{a}-1}{\sqrt{a}}-\dfrac{1}{2}< 0\)

\(\Leftrightarrow\dfrac{2\left(\sqrt{a}-1\right)}{2\sqrt{a}}-\dfrac{\sqrt{a}}{2\sqrt{a}}< 0\)

\(\Leftrightarrow\dfrac{2\sqrt{a}-2-\sqrt{a}}{2\sqrt{a}}< 0\)

\(\Leftrightarrow\dfrac{\sqrt{a}-2}{2\sqrt{a}}< 0\)

mà \(2\sqrt{a}>0\forall a\) thỏa mãn ĐKXĐ

nên \(\sqrt{a}-2< 0\)

\(\Leftrightarrow\sqrt{a}< 2\)

hay a<4

Kết hợp ĐKXĐ, ta được: \(\left\{{}\begin{matrix}0< a< 4\\a\ne1\end{matrix}\right.\)

Vậy: Để \(P< \dfrac{1}{2}\) thì \(\left\{{}\begin{matrix}0< a< 4\\a\ne1\end{matrix}\right.\)

27 tháng 5 2017

Căn bậc hai. Căn bậc ba

12 tháng 7 2018

1/ đkxđ: a > 0; a khác 1

a/ A= (\(\dfrac{\sqrt{a}}{2\sqrt{a}}-\dfrac{1}{2\sqrt{a}}\))\(\left(\dfrac{a-\sqrt{a}}{\sqrt{a}+1}-\dfrac{a+\sqrt{a}}{\sqrt{a}-1}\right)\)

\(=\dfrac{\sqrt{a}-1}{2\sqrt{a}}\cdot\dfrac{\sqrt{a}\left(\sqrt{a}-1\right)^2-\sqrt{a}\left(\sqrt{a}+1\right)^2}{a-1}\)

\(=\dfrac{1}{2\sqrt{a}}\cdot\dfrac{a\sqrt{a}-2a+\sqrt{a}-a\sqrt{a}-2a-\sqrt{a}}{a-1}\)

\(=\dfrac{1}{2\sqrt{a}}\cdot\dfrac{-4a}{a-1}=-\dfrac{2\sqrt{a}}{a-1}=\dfrac{2\sqrt{a}}{a+1}\)

b/+) A = 4

\(\Leftrightarrow\dfrac{2\sqrt{a}}{a+1}=4\)\(\Leftrightarrow2\sqrt{a}=4a+4\)

=> Không có gt a nào t/m

+) \(A>-6\)

\(\Leftrightarrow\dfrac{2\sqrt{a}}{a+1}>-6\)

\(\Leftrightarrow2\sqrt{a}>-6a-6\)

\(\Leftrightarrow6a+2\sqrt{a}+6>0\) (luôn đúng vì a > 0)

=> bpt có nghiệm với mọi a > 0

vậy........

c/ \(a^2-3=0\Leftrightarrow\left[{}\begin{matrix}a=\sqrt{3}\left(tm\right)\\a=-\sqrt{3}\left(ktmđkxđ\right)\end{matrix}\right.\)

Với a = \(\sqrt{3}\) ta có:

\(A=\dfrac{2\sqrt{3}}{\sqrt{3}+1}=\dfrac{2\sqrt{3}\left(\sqrt{3}-1\right)}{3-1}=\dfrac{2\sqrt{3}\left(\sqrt{3}-1\right)}{2}=\sqrt{3}\left(\sqrt{3}-1\right)=3-\sqrt{3}\)

8 tháng 8 2018

1/ Rút gọn: \(a)3\sqrt{2a}-\sqrt{18a^3}+4\sqrt{\dfrac{a}{2}}-\dfrac{1}{4}\sqrt{128a}\left(a\ge0\right)=3\sqrt{2a}-3a\sqrt{2a}+2\sqrt{2a}-2\sqrt{2a}=3\sqrt{2a}\left(1-a\right)\)b)\(\dfrac{\sqrt{2}-1}{\sqrt{2}+2}-\dfrac{2}{2+\sqrt{2}}+\dfrac{\sqrt{2}+1}{\sqrt{2}}=\dfrac{\sqrt{2}-1-2}{\sqrt{2}+2}+\dfrac{\sqrt{2}+1}{\sqrt{2}}=\dfrac{\sqrt{2}-3}{\sqrt{2}+2}+\dfrac{\sqrt{2}+1}{\sqrt{2}}=\dfrac{\sqrt{2}-3+2+1+2\sqrt{2}}{\sqrt{2}\left(1+\sqrt{2}\right)}=\dfrac{3\sqrt{2}}{\sqrt{2}\left(1+\sqrt{2}\right)}=\dfrac{3}{1+\sqrt{2}}\)c)\(\dfrac{2+\sqrt{5}}{\sqrt{2}+\sqrt{3+\sqrt{5}}}+\dfrac{2-\sqrt{5}}{\sqrt{2}-\sqrt{3-\sqrt{5}}}=\dfrac{\sqrt{2}\left(2+\sqrt{5}\right)}{\left(\sqrt{2}+\sqrt{3+\sqrt{5}}\right)\sqrt{2}}+\dfrac{\sqrt{2}\left(2-\sqrt{5}\right)}{\sqrt{2}\left(\sqrt{2}-\sqrt{3-\sqrt{5}}\right)}=\dfrac{2\sqrt{2}+\sqrt{10}}{2+\sqrt{6+2\sqrt{5}}}+\dfrac{2\sqrt{2}-\sqrt{10}}{2-\sqrt{6-2\sqrt{5}}}=\dfrac{2\sqrt{2}+\sqrt{10}}{2+\sqrt{\left(\sqrt{5}+1\right)^2}}+\dfrac{2\sqrt{2}-\sqrt{10}}{2-\sqrt{\left(\sqrt{5}-1\right)^2}}=\dfrac{\sqrt{2}\left(2+\sqrt{5}\right)}{2+\sqrt{5}+1}+\dfrac{\sqrt{2}\left(2-\sqrt{5}\right)}{2-\sqrt{5}+1}=\dfrac{\sqrt{2}\left(2+\sqrt{5}\right)}{3+\sqrt{5}}+\dfrac{\sqrt{2}\left(2-\sqrt{5}\right)}{3-\sqrt{5}}=\dfrac{\sqrt{2}\left(2+\sqrt{5}\right)\left(3-\sqrt{5}\right)+\sqrt{2}\left(2-\sqrt{5}\right)\left(3+\sqrt{5}\right)}{\left(3+\sqrt{5}\right)\left(3-\sqrt{5}\right)}=\dfrac{\sqrt{2}\left(6-2\sqrt{5}+3\sqrt{5}-5+6+2\sqrt{5}-3\sqrt{5}-5\right)}{9-5}=\dfrac{2\sqrt{2}}{4}=\dfrac{1}{\sqrt{2}}\)

8 tháng 8 2018

Làm nốt nè :3

\(2.a.P=\left(\dfrac{1}{x-\sqrt{x}}+\dfrac{1}{\sqrt{x}-1}\right):\dfrac{\sqrt{x}}{x-2\sqrt{x}+1}=\dfrac{\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)}.\dfrac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}}=\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{x}=\dfrac{x-1}{x}\left(x>0;x\ne1\right)\)\(b.P>\dfrac{1}{2}\Leftrightarrow\dfrac{x-1}{x}-\dfrac{1}{2}>0\)

\(\Leftrightarrow\dfrac{x-2}{2x}>0\)

\(\Leftrightarrow x-2>0\left(do:x>0\right)\)

\(\Leftrightarrow x>2\)

\(3.a.A=\left(\dfrac{\sqrt{a}}{\sqrt{a}-1}-\dfrac{\sqrt{a}}{a-\sqrt{a}}\right):\dfrac{\sqrt{a}+1}{a-1}=\dfrac{\sqrt{a}-1}{\sqrt{a}-1}.\dfrac{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}{\sqrt{a}+1}=\sqrt{a}-1\left(a>0;a\ne1\right)\)

\(b.Để:A< 0\Leftrightarrow\sqrt{a}-1< 0\Leftrightarrow a< 1\)

Kết hợp với DKXĐ : \(0< a< 1\)

Bài 1:

a: ĐKXĐ: 2x+3>=0 và x-3>0

=>x>3

b: ĐKXĐ:(2x+3)/(x-3)>=0

=>x>3 hoặc x<-3/2

c: ĐKXĐ: x+2<0

hay x<-2

d: ĐKXĐ: -x>=0 và x+3<>0

=>x<=0 và x<>-3

11 tháng 2 2019

1. a) \(A=\left(\dfrac{\sqrt{x}-1+x-\sqrt{x}}{\left(x-\sqrt{x}\right)\left(\sqrt{x}-1\right)}\right).\dfrac{2\sqrt{x}}{\sqrt{x}+1}\)ĐK x\(\ne\)0,1

\(=\dfrac{\left(x-1\right)2\sqrt{x}}{\left(x-\sqrt{x}\right)\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\dfrac{\left(x-1\right)2\sqrt{x}}{\left(x-\sqrt{x}\right)\left(x-1\right)}=\dfrac{2\sqrt{x}}{x-\sqrt{x}}\)

b) A<-1 <=> \(\dfrac{2\sqrt{x}}{x-\sqrt{x}}< -1\)\(\Leftrightarrow\dfrac{2\sqrt{x}}{x-\sqrt{x}}+1< 0\)

\(\Leftrightarrow\dfrac{2\sqrt{x}+x-\sqrt{x}}{x-\sqrt{x}}< 0\)\(\Leftrightarrow\dfrac{x+\sqrt{x}}{x-\sqrt{x}}< 0\)

\(\Leftrightarrow x-\sqrt{x}< 0\) (vì \(x+\sqrt{x}>0\left(\forall x>0\right)\))

\(\Leftrightarrow x< \sqrt{x}\Leftrightarrow x^2< x\Leftrightarrow x^2-x< 0\)

\(\Leftrightarrow x\in\left(0;1\right)\Leftrightarrow0< x< 1\)

18 tháng 3 2021

P/s gọi a = x cho dễ viết nhé 

a, Với \(x\ge0;x\ne1;x\ne4\)

\(P=\left(\frac{1}{\sqrt{x}-1}-\frac{1}{\sqrt{x}}\right):\left(\frac{\sqrt{x}+1}{\sqrt{x}-2}-\frac{\sqrt{x}+2}{\sqrt{x}-1}\right)\)

\(=\left(\frac{\sqrt{x}-\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)}\right):\left(\frac{x-1-x+4}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\right)\)

\(=\frac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}:\frac{3}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}=\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}{3\sqrt{x}\left(\sqrt{x}-1\right)}=\frac{\sqrt{x}-2}{3\sqrt{x}}\)

chỗ này mình nghĩ ko phải trục căn thức đâu ha :D 

b, Ta có P > 1/6 hay \(\frac{\sqrt{x}-2}{3\sqrt{x}}>\frac{1}{6}\Leftrightarrow\frac{\sqrt[]{x}-2}{3\sqrt{x}}-\frac{1}{6}>0\)

\(\Leftrightarrow\frac{6\sqrt{x}-12-3\sqrt{x}}{18\sqrt{x}}>0\Leftrightarrow\frac{3\sqrt{x}-12}{18\sqrt{x}}>0\)

\(\Leftrightarrow3\sqrt{x}-12>0\)( vì \(18\sqrt{x}>0\))

\(\Leftrightarrow3\sqrt{x}>12\Leftrightarrow\sqrt{x}>4\Leftrightarrow x>16\)

Vậy \(x>16\)

cho mình hỏi đề có sai ko ? \(P< \frac{1}{6}\)mình nghĩ sẽ hợp lí hơn 

18 tháng 3 2021

んuリ イ hãy thuận theo ý thầy :)) và nhớ chú ý đến ĐKXĐ

\(P=\left(\frac{1}{\sqrt{a}-1}-\frac{1}{\sqrt{a}}\right)\div\left(\frac{\sqrt{a}+1}{\sqrt{a}-2}-\frac{\sqrt{a}+2}{\sqrt{a}-1}\right)\)

ĐKXĐ : \(\hept{\begin{cases}x>0\\x\ne1\\x\ne4\end{cases}}\)

\(=\left(\frac{\sqrt{a}}{\sqrt{a}\left(\sqrt{a}-1\right)}-\frac{\sqrt{a}-1}{\sqrt{a}\left(\sqrt{a}-1\right)}\right)\div\left(\frac{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}-\frac{\left(\sqrt{a}-2\right)\left(\sqrt{a}+2\right)}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}\right)\)

\(=\frac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}\div\left(\frac{a-1}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}-\frac{a-4}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}\right)\)

\(=\frac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}\div\frac{3}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}\)

\(=\frac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}\times\frac{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}{3}=\frac{\sqrt{a}-2}{3\sqrt{a}}\)

Để P > 1/6 thì \(\frac{\sqrt{a}-2}{3\sqrt{a}}>\frac{1}{6}\)

<=> \(\frac{\sqrt{a}-2}{3\sqrt{a}}-\frac{1}{6}>0\)

<=> \(\frac{2\sqrt{a}-4}{6\sqrt{a}}-\frac{\sqrt{a}}{6\sqrt{a}}>0\)

<=> \(\frac{\sqrt{a}-4}{6\sqrt{a}}>0\)

Dễ thấy \(6\sqrt{a}>0\forall x>0\)

=> \(\sqrt{a}-4>0\)<=> \(\sqrt{a}>4\)<=> \(a>16\)

Vậy với a > 16 thì P > 1/6

23 tháng 6 2017

(bài 1) a) \(\dfrac{1}{5+2\sqrt{6}}-\dfrac{1}{5-2\sqrt{6}}\) = \(\dfrac{5-2\sqrt{6}-5-2\sqrt{6}}{25-24}\)

= \(\dfrac{-4\sqrt{6}}{1}\) = \(-4\sqrt{6}\)

b) \(\sqrt{6+2\sqrt{5}}-\dfrac{\sqrt{15}-\sqrt{3}}{\sqrt{3}}\) = \(\sqrt{\left(\sqrt{5}+1\right)^2}-\dfrac{\sqrt{3}\left(\sqrt{5}-1\right)}{\sqrt{3}}\)

= \(\left(\sqrt{5}+1\right)-\left(\sqrt{5}-1\right)\) = \(\sqrt{5}+1-\sqrt{5}+1\) = \(2\)

c) \(\dfrac{3\sqrt{2}-2\sqrt{3}}{\sqrt{3}-\sqrt{2}}:\dfrac{1}{\sqrt{16}}\) = \(\dfrac{\sqrt{6}\left(\sqrt{3}-\sqrt{2}\right)}{\sqrt{3}-\sqrt{2}}:\dfrac{1}{\sqrt{16}}\)

= \(\sqrt{6}.\sqrt{16}\) = \(4\sqrt{6}\)

d) \(\dfrac{3+2\sqrt{3}}{\sqrt{3}}+\dfrac{2+\sqrt{2}}{1+\sqrt{2}}-\dfrac{1}{2-\sqrt{3}}\)

= \(\dfrac{\sqrt{3}\left(\sqrt{3}+2\right)}{\sqrt{3}}+\dfrac{\sqrt{2}\left(\sqrt{2}+1\right)}{1+\sqrt{2}}-\dfrac{1}{2-\sqrt{3}}\)

= \(\sqrt{3}+2+\sqrt{2}-\dfrac{1}{2-\sqrt{3}}\) = \(\dfrac{\left(\sqrt{3}+2+\sqrt{2}\right)\left(2-\sqrt{3}\right)-1}{2-\sqrt{3}}\)

= \(\dfrac{2\sqrt{3}-3+4-2\sqrt{3}+2\sqrt{2}-\sqrt{6}-1}{2-\sqrt{3}}\)

= \(\dfrac{2\sqrt{2}-\sqrt{6}}{2-\sqrt{3}}\) = \(\dfrac{\sqrt{2}\left(2-\sqrt{3}\right)}{2-\sqrt{2}}\) = \(\sqrt{2}\)

e) \(\dfrac{4}{1+\sqrt{3}}-\dfrac{\sqrt{15}+\sqrt{3}}{1+\sqrt{5}}\) = \(\dfrac{4}{1+\sqrt{3}}-\dfrac{\sqrt{3}\left(\sqrt{5}+1\right)}{1+\sqrt{5}}\)

= \(\dfrac{4}{1+\sqrt{3}}-\sqrt{3}\) = \(\dfrac{4-\sqrt{3}-3}{1+\sqrt{3}}\) = \(\dfrac{1-\sqrt{3}}{1+\sqrt{3}}\)

= \(\dfrac{\left(1-\sqrt{3}\right)\left(1-\sqrt{3}\right)}{1-3}\) = \(\dfrac{1-2\sqrt{3}+3}{-2}\) = \(\dfrac{4-2\sqrt{3}}{-2}\)

= \(\dfrac{-2\left(-2+\sqrt{3}\right)}{-2}\) = \(\sqrt{3}-2\)

23 tháng 6 2017

bài 2)

a)\(\dfrac{a+b-2\sqrt{ab}}{\sqrt{a}-\sqrt{b}}:\dfrac{1}{\sqrt{a}+\sqrt{b}}=\dfrac{\left(a+b-2\sqrt{ab}\right)\left(\sqrt{a}+\sqrt{b}\right)}{\sqrt{a}-\sqrt{b}}\)

= \(\dfrac{a\sqrt{a}+a\sqrt{b}+b\sqrt{a}+b\sqrt{b}-2a\sqrt{b}-2b\sqrt{a}}{\sqrt{a}-\sqrt{b}}\)

= \(\dfrac{a\sqrt{a}+-a\sqrt{b}+b\sqrt{b}-b\sqrt{a}}{\sqrt{a}-\sqrt{b}}\) = \(\dfrac{a\left(\sqrt{a}-\sqrt{b}\right)-b\left(\sqrt{a}-\sqrt{b}\right)}{\sqrt{a}-\sqrt{b}}\)

= \(\dfrac{\left(a-b\right)\left(\sqrt{a}-\sqrt{b}\right)}{\sqrt{a}-\sqrt{b}}\) = \(a-b\)

b) \(\left(\dfrac{\sqrt{a}}{2}-\dfrac{1}{2\sqrt{a}}\right).\left(\dfrac{a-\sqrt{a}}{\sqrt{a}+1}-\dfrac{a+\sqrt{a}}{\sqrt{a}-1}\right)\)

= \(\dfrac{2a-2}{4\sqrt{a}}.\dfrac{\sqrt{a}\left(\sqrt{a}-1\right)^2-\sqrt{a}\left(\sqrt{a}+1\right)^2}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}\)

= \(\dfrac{2a-2}{4\sqrt{a}}.\dfrac{\sqrt{a}\left(a-2\sqrt{a}+1\right)-\sqrt{a}\left(a+2\sqrt{a}+1\right)}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}\)

= \(\dfrac{2a-2}{4\sqrt{a}}.\dfrac{a\sqrt{a}-2a+\sqrt{a}-a\sqrt{a}-2a-\sqrt{a}}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}\)

= \(\dfrac{2\left(a-1\right)}{4\sqrt{a}}.\dfrac{-4a}{a-1}\) = \(-2\)

14 tháng 7 2017

Bài 2:

\(P=\left(\dfrac{\sqrt{a}}{2}-\dfrac{1}{2\sqrt{a}}\right)^2.\left(\dfrac{\sqrt{a}-1}{\sqrt{a}+1}-\dfrac{\sqrt{a}+1}{\sqrt{a}-1}\right)\)

\(P=\left(\dfrac{a-1}{2\sqrt{a}}\right)^2.\left(\dfrac{\left(\sqrt{a}-1\right)^2-\left(\sqrt{a}+1\right)^2}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}\right)\)

\(P=\left[\dfrac{\left(a-1\right)^2}{4a}\right].\left(\dfrac{\left(\sqrt{a}-1+\sqrt{a}+1\right)\left(\sqrt{a}-1\right)-\sqrt{a}-1}{a-1}\right)\)

\(P=\dfrac{\left(a-1\right)^2}{4a}.\dfrac{2\sqrt{a}.\left(-2\right)}{a-1}\)

\(P=\dfrac{\left(a-1\right)^2\left(-4\sqrt{a}\right)}{4a.\left(a-1\right)}\)

\(P=\dfrac{\left(a-1\right).\left(-\sqrt{a}\right)}{a}=\dfrac{-a\sqrt{a}+\sqrt{a}}{a}\)

14 tháng 7 2017

Bài 1:

\(A=\dfrac{2}{\sqrt{2}}-\dfrac{1}{\sqrt{3}-\sqrt{2}}+\dfrac{2}{\sqrt{3}-1}\)\(A=\dfrac{2\sqrt{2}}{2}-\dfrac{1\left(\sqrt{3}+\sqrt{2}\right)}{3-2}+\dfrac{2\left(\sqrt{3}+1\right)}{\left(\sqrt{3}\right)^2-1}\)

\(A=\sqrt{2}-\dfrac{\sqrt{3}+\sqrt{2}}{1}+\dfrac{2\left(\sqrt{3}+1\right)}{3-1}\)

\(A=\sqrt{2}-\sqrt{3}-\sqrt{2}+\sqrt{3}+1\)

\(A=1\)

1 tháng 8 2018

1 , ĐKXĐ : \(x\ge0,x\ne1\)

Với điều kiện xác định trên phương trình đã cho thánh :

\(\dfrac{1}{\sqrt{x}+1}-\dfrac{2}{\sqrt{x}-1}+\dfrac{x+3}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{\sqrt{x}-1-2\left(\sqrt{x}+1\right)+x+3}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{x+\sqrt{x}}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}=\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{\sqrt{x}}{\sqrt{x}-1}\)