K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 5 2020

Bài 2 : 

A B C D H

a ) Ta có : \(AH\perp BD\Rightarrow\widehat{AHD}=\widehat{BCD}=90^0\)

AD//BC \(\Rightarrow\widehat{ADH}=\widehat{DBC}\)

\(\Rightarrow\Delta AHB~\Delta DCB\left(g.g\right)\)

b ) Ta có : \(AB=12,BC=9\Rightarrow BD=\sqrt{AB^2+BC^2}=15\)

Từ câu a \(\Rightarrow\frac{AH}{CD}=\frac{AB}{DB}\)

\(\Rightarrow AH=\frac{AB.CD}{DB}=\frac{12.12}{15}=\frac{48}{5}\)

c ) Ta có \(\widehat{DAH}=\widehat{ABH}\left(+\widehat{BAH}=90^0\right)\)

\(\widehat{AHB}=\widehat{AHD}=90^0\)

\(\Rightarrow\Delta ADH~\Delta BAH\left(g.g\right)\)

\(\Rightarrow\frac{AH}{BH}=\frac{DH}{AH}\Rightarrow AH.AH=BH.DH\)

a: Xét (O) có

CM,CA là tiếp tuyến

nên CM=CA và OC là phân giác của góc MOA(1)

mà OM=OA

nên OC là trung trực của AM

Xét (O) có

DM,DB là tiếp tuyến

nên DM=DB và OD là phân giác của góc MOB(2)

mà OM=OB

nên OD là trung trực của BM

Từ (1), (2) suy ra góc COD=1/2*180=90 độ

c: Xét tứ giác MEOF có

góc MEO=góc MFO=góc EOF=90 độ

nên MEOF là hình chữ nhật

=>EF=MO=R

a: Xét (O) có

CM là tiếp tuyến

CA là tiếp tuyến

Do đó: CM=CA và OC là tia phân giác của góc MOA(1)

Xét (O) có

DM là tiếp tuyến

DB là tiếp tuyến

Do đó: DM=DB và OD là tia phân giác của góc MOB(2)

Từ (1) và (2) suy ra \(\widehat{COD}=\dfrac{1}{2}\left(\widehat{MOA}+\widehat{MOB}\right)=\dfrac{1}{2}\cdot180^0=90^0\)

hay ΔCOD vuông tại O

b: Xét ΔCOD vuông tại O có OM là đường cao

nên \(MC\cdot MD=MO^2=R^2=AC\cdot BD\)

26 tháng 12 2016

A B M C D E H

Câu c: \(BM\) cắt \(AC\) tại \(E\). Như vậy thì tam giác \(EMA\) vuông tại \(M\).

\(CA=CM\) nên \(\widehat{EAM}=\widehat{CMA}\).

Mà \(\widehat{EAM}+\widehat{AEB}=90^o=\widehat{CMA}+\widehat{EMC}\) nên \(\widehat{AEM}=\widehat{EMC}\).

Tức là \(CE=CM=CA\) hay \(C\) là trung điểm \(AM\)

Đến đây bạn để ý \(MH\) song song với \(AM\) và dùng định lí Thales là CM được.

3 tháng 12 2018

Gọi N là giao MH với BC ( N thuộc MH )

Tương tựTrần Quốc Đạt thì C là trung điểm AE

Vì MN // CE nên theo Ta-let

\(\frac{MN}{CE}=\frac{BN}{BC}\)

Vì NH // CA nên theo Talet

\(\frac{BN}{BC}=\frac{NH}{CA}\)

\(\Rightarrow\frac{MN}{CE}=\frac{NH}{CA}\)

Mà CE = CA (trung điểm)

\(\Rightarrow MN=NH\)=> N là trung điểm MH

Nên BC đi qua trung điểm N của MH

P/S : BÀi này ko liên quan tới A,N,D thẳng hàng nhé !