K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 3 2022

Gọi ƯCLN(2n+1005;4n+2011)=d(\(d\in\)N*) 

\(\Rightarrow2n+1005⋮d\Rightarrow4n+2010⋮d\Rightarrow4n+2011-4n-2010⋮d\Leftrightarrow1⋮d\Leftrightarrow d=1\)

Vậy ta có đpcm 

1 tháng 3 2022

gọi d là ƯC(2n+1005,4n+2011)(d\(\in\)N*) 

theo bài ra ta có 

2n+1005\(⋮\)d\(\Rightarrow\)2(2n+1005)\(⋮\)d\(\Rightarrow\)4n+2010\(⋮\)d

4n+2011\(⋮\)d

\(\Rightarrow\)(4n+2011)-(4n+2010)\(⋮\)d

\(\Rightarrow\)4n+2011-4n+2010\(⋮\)d

\(\Rightarrow\)1\(⋮\)d

\(\Rightarrow\)d=1

vậy với mọi n \(\in\)N thì \(\dfrac{2n+1005}{4n+2011}\) là phân số tối giản

3 tháng 4 2018

thiếu chữ luôn tối giản

23 tháng 2 2016

Gọi d là ƯC(2n+1;4n+6)

Ta có 2n+1 chia hết cho d

4n+6 chia hết cho d

=> 2(2n+1) chia hết cho d

4n+6 chia hết cho d

=> 4n+2 chia hết cho d

4n+6 chia hết cho d

=> (4n+6)-(4n+2) chia hết cho d

=> 4 chia hết cho d

= d E Ư(4)={-1;1;-2;2;-3;3;-4;4}

Vì 2n+1 là số lẻ nên nó ko chia hết cho -2;2;-4;4

Vậy d chỉ có thể là -1 và 1

Vì d chỉ có thể là -1 hoặc 1 nên 2n+1/4n+6 là phân số tối giản

23 tháng 2 2016

bạn cho mình hỏi 4n+2 bạn sao ra vậy

20 tháng 2 2016

2n+1chia hết cho d ; 4n+6 chia hết cho d suy ra 2n+3 chia hết cho d

suy ra (2n+3)-(2n+1) chia hết cho d suy ra 2 chia hết cho d hay d thuộc U(2)={2;-2;1;-1}

vì 2n+1 là số lẻ nên d={1;-1}

suy ra 2n+1phần 4n+6 là phân số tối giản

16 tháng 7 2017

2n+1chia hết cho d ; 4n+6 chia hết cho d suy ra 2n+3 chia hết cho d

suy ra (2n+3)-(2n+1) chia hết cho d suy ra 2 chia hết cho d hay d thuộc U(2)

={2;-2;1;-1}

vì 2n+1 là số lẻ nên d={1;-1}

suy ra 2n+1phần 4n+6 là phân số tối giản

27 tháng 4 2017

=>UCLN(2n+1005,4n+2001)=1

gọi d la UC(2n+1005,4n+2001)

=>2n+1005 chia hết cho d và 4n+2001 chia hết cho d

=>4n+2010 chia hết cho d và 4n+2001 chia hết cho d

=>4n+2010-4n-2001 chia het cho d

=>9 chia het cho d

=> de bai cho sai roi

27 tháng 4 2020

Gọi d là ƯCLN (2n+3; 4n+7) (d thuộc N)

=> \(\hept{\begin{cases}2n+3⋮d\\4n+7⋮d\end{cases}\Rightarrow\hept{\begin{cases}2\left(2n+3\right)⋮d\\4n+7⋮d\end{cases}\Rightarrow}\hept{\begin{cases}4n+6⋮d\\4n+7⋮d\end{cases}}}\)

=> (4n+7)-(4n+6) chia hết cho d

=> 4n+7-4n-6 chia hết cho d

=> 1 chia hết cho d. Mà d thuộc N 

=> d=1 => ƯCLN (2n+3; 4n+7)=1

=> \(\frac{2n+3}{4n+7}\)tối giản với n thuộc Z

27 tháng 4 2020

Gọi d là ƯC(2n + 3 ; 4n + 7)

\(\Rightarrow\hept{\begin{cases}2n+3⋮d\\4n+7⋮d\end{cases}\Rightarrow}\hept{\begin{cases}4\left(2n+3\right)⋮d\\2\left(4n+7\right)⋮d\end{cases}\Rightarrow\hept{\begin{cases}8n+12⋮d\\8n+14⋮d\end{cases}}}\)

=> ( 8n + 12 ) - ( 8n + 14 ) chia hết cho d

=> 2 chia hết cho d

* d = 1 => 2n + 3 chia hết cho 1

* d = 2 => 2n + 3 không chia hết cho 2 vì 3 không chia hết cho 2

=> d = 1

=> ƯCLN(2n + 3; 4n + 7) = 1

=> \(\frac{2n+3}{4n+7}\)tối giản ( đpcm )

20 tháng 2 2016

Gọi UCLN(2n+1,4n+6)=d

Ta có:2n+1 chia hết cho d

4n+6 chia hết cho d

=>2(2n+1) chia hết cho d

4n+6 chia hết cho d

=>4n+2 chia hết cho d

4n+6 chia hết cho d

=>(4n+6)-(4n+2) chia hết cho d

=>4 chia hết cho d

=>d={1,2,4}

Mà 4n+6 không chia hết cho 4

=>d={1,2}

Mà 2n+1 không chia hết cho 2

=>d=1

Vậy phân số \(\frac{2n+1}{4n+6}\) tối giản