Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét \(\Delta\perp ADB\)và \(\Delta\perp AEC\)có :
\(\widehat{A}:chung\)(1)
\(AB=AC\)(vì tam giác ABC cân ) (2)
\(\widehat{ADB}=\widehat{AEC}=90^o\)(3)
Từ (1) ;(2) và (3)
\(\Rightarrow\Delta\perp ADB=\Delta\perp AEC\)( cạnh huyền - góc nhọn )
\(\Rightarrow AD=AE\)( cặp cạnh tương ứng )
b) +)
Xét \(\Delta\perp AEH\)và \(\Delta\perp ADH\)có :
\(AE=AD\) ( chứng minh ở câu a ) (1)
\(\widehat{AEH}=\widehat{ADH}=90^o\)(2)
\(AH:\)Cạnh chung (3)
Từ (1) (2)và (3)
\(\Rightarrow\Delta\perp AEH=\Delta\perp ADH\)( c-g-c)
\(\Rightarrow\widehat{EAH}=\widehat{DAH}\)( cặp góc tương ứng )
=> AH là đường phân giác của góc BAC ( đpcm )
+)
Vì \(AE=AD\)( chứng minh ở câu a )
\(\Rightarrow\Delta EAD\)Cân (1)
Mà AH là phân giác của góc BAC ( chứng minh trên ) (2)
Từ (1) và (2) => AH là đường trung trực của ED ( đpcm )
( vì trong 1 tam giác cân đường phân giác ứng với cạnh đáy đồng thời là đường trung trực -- Áp dụng định lí này nha )
c) Vì \(AB=AC\)( do tam giác ABC cân ) (1)
\(AE=AD\)( chứng minh ở câu a ) (2)
Từ (1) và (2) [ Cộng vế với vế ]
\(\Rightarrow BE=CD\)
Xét \(\Delta\perp BEH\)và \(\Delta\perp HDC\)có :
\(\widehat{BEH}=\widehat{CDH}=90^o\)(1)
\(BE=CD\)( chứng minh trên ) (2)
\(\widehat{EHB}=\widehat{HDC}\)( đối đỉnh ) (3)
Từ (1);(2) và (3)
\(\Rightarrow\Delta\perp BEH=\Delta\perp HCD\)(g.c.g)
\(\Rightarrow BE=HC\)( 2 cạnh tương ứng )
a, Xét tam giác DAE và tam giác BAC có
DAE = BAC ( đối đỉnh )
AD = AB ( gt)
AE= AC ( gt)
=> tam giác DAE = tam giác BAC
=> BC= DE
b, ta có DAE = BAC = 90 độ ( 2 góc đối đỉnh )
lại có BAD = CAE đối đỉnh
=> BAD=CAE = 360 - (BaC + DAE) tất cả trên 2
<=> BAD= 360 -180 tâts cả trên 2
<=> BAD = 180 trên 2
<=> BAD = 90 độ
=> tam giác BAD vuông lại A
mà AB =AD (gt)
=> BAD vuông cân
=> DBA = BDA = 90 trên 2 = 45 độ
Chứng mình tương tự tam giác CAE vuông cân
=>AEC=ACE= 90 trên 2 = 45 độ
=> DBA=AEC=45 độ
mà chúng ở vị trí sole trong
=> BD // CE
A B C D E M N H
a) Xét \(\Delta ABC\)và\(\Delta ADE\):
AB=AD(gt)
\(\widehat{BAC}=\widehat{DAE}=90^o\)
AC=AE(gt)
=> \(\Delta ABC=\Delta ADE\left(c-g-c\right)\)
=> BC=DE ( 2 cạnh tương ứng)
=> Đpcm
b) Ta có \(\Delta ABD\)vuông cân tại A
=> \(\widehat{ABD}=\widehat{ADB}=\frac{\widehat{DAB}}{2}=\frac{90^o}{2}=45^o\)
\(\Delta AEC\)vuông cân tại A
=> \(\widehat{AEC}=\widehat{ACE}=\frac{\widehat{EAC}}{2}=\frac{90^o}{2}=45^o\)
=> \(\widehat{BDA}=\widehat{ECA}=45^o\)
Mà 2 góc này ở vị trí so le trong
=> BD//CE
=> Đpcm
c) Sửa đề: Kẻ dường cao AH của tam giác ABC cắt DE tại M. Vẽ đường thẳng qua A và vuông góc với MC cắt BC tại N. Chứng minh rằng CA vuông góc với NM
Gọi giao điể của NA và MC là I
Xét \(\Delta NMC\)có:
\(\hept{\begin{cases}NI\perp MC\\MH\perp NC\end{cases}}\)
Mà 2 đường cao này cắt nhau tại A
=> A là trực tâm của \(\Delta MNC\)
=> \(CA\perp NM\)
=> Đpcm
d) Ta có: \(\widehat{ADM}=\widehat{ABC}\left(\Delta ADE=\Delta ABC\right)\)
=> \(\widehat{ADM}+\widehat{AED}=\widehat{ABC}+\widehat{BAH}=90^o\)
=> \(\widehat{AED}=\widehat{BAH}\) Mà \(\widehat{BAH}=\widehat{MAE}\left(đđ\right)\)
=> \(\widehat{AED}=\widehat{MAE}\)
=> \(\Delta MAE\)cân tại M
=> MA=ME (1)
Lại có: \(\widehat{AED}=\widehat{ACB}\Rightarrow\widehat{AED}+\widehat{ADE}=\widehat{ACB}+\widehat{CAH}=90^o\)
=> \(\widehat{ADE}=\widehat{CAH}\)
Mà \(\widehat{CAH}=\widehat{DAM}\left(đđ\right)\)
=> \(\widehat{ADE}=\widehat{DAM}\)
=> \(\Delta DAM\)cân tại M
=> MD=MA (2)
Từ (1) và (2)
=> MA=MD=ME
=> \(MA=\frac{1}{2}DE\)
=> Đpcm
P/s: Thật ra định làm tắt cho bạn tự suy luận, nhưng sợ bạn ko hiểu nên thoi, mỏi cả tay:>>>
Câu a ) - Chứng minh tam giác vuông ABD = tam giác vuông ACE ( cạnh huyền - góc nhọn ) => Tự chứng minh
Câu b ) - Vì tam giác vuông ABD = tam giác vuông ACE ( ở câu a )
=> Góc B1 = góc C1 ( 2 góc tương ứng )
- Vì tam giác ABC là tam giác cân => góc B = góc C
Ta có góc B1 + góc B2 = góc C1 + C2
=> Góc B2 = góc C2
- Vậy tam giác HBC là tam giác cân
Câu c )