K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 1 2021

3: \(P=\dfrac{x}{\left(x+y\right)+\left(x+z\right)}+\dfrac{y}{\left(y+z\right)+\left(y+x\right)}+\dfrac{z}{\left(z+x\right)+\left(z+y\right)}\le\dfrac{1}{4}\left(\dfrac{x}{x+y}+\dfrac{x}{x+z}\right)+\dfrac{1}{4}\left(\dfrac{y}{y+z}+\dfrac{y}{y+x}\right)+\dfrac{1}{4}\left(\dfrac{z}{z+x}+\dfrac{z}{z+y}\right)=\dfrac{3}{2}\).

Đẳng thức xảy ra khi x = y = x = \(\dfrac{1}{3}\).

15 tháng 7 2017

Theo đề ta suy ra  \(y\le1-3x\)

\(\Rightarrow\sqrt{xy}\le\sqrt{x\left(1-3x\right)}\)

Ta có  \(A=\frac{1}{x}+\frac{1}{\sqrt{xy}}\ge\frac{1}{x}+\frac{1}{\sqrt{x\left(1-3x\right)}}\ge\frac{1}{x}+\frac{1}{\frac{x+\left(1-3x\right)}{2}}=\frac{2}{2x}+\frac{2}{-2x+1}\)

\(=2\left(\frac{1}{2x}+\frac{1}{-2x+1}\right)\ge2.\frac{\left(1+1\right)^2}{2x-2x+1}=8\)

Vậy  \(A\ge8\)

Đẳng thức xảy ra  \(\Leftrightarrow\)  \(\hept{\begin{cases}x=1-3x=y\\\frac{1}{2x}=\frac{1}{-2x+1}\\3x+y=1\end{cases}}\)  \(\Leftrightarrow\)  \(x=y=\frac{1}{4}\)

20 tháng 12 2020

bỏ chữ x đầu nhá mình ghi nhầm :>

mk mới hok lớp 7 ak ko làm được hhi!!!!!!!!!!!!!!!

678679780

28 tháng 4 2022

Giúp mình câu này với ah. 

 

28 tháng 4 2022

a Ah box môn TA đâu gòi:)?

22 tháng 3 2020

Đặt \(X=x+1\)

Khi đó, hàm số \(y=f\left(x\right)=g\left(X\right)=X^2\)có dạng \(y=ax^2\)

Với \(-2\le x\le2\)thì \(-1\le X\le3\)

\(a=1>0\)nên hàm số đồng biến khi \(X>0\); nghịch biến khi \(X< 0\)và đạt giá trị nhỏ nhất là \(y=0\)tại \(X=0\)

+ Xét \(-1\le X\le0\), hàm số nghịch biến nên ta có :

\(g\left(-1\right)\ge g\left(X\right)\ge g\left(0\right)\Leftrightarrow1\ge f\left(x\right)\ge0\)

+ Xét \(0\le X\le3\), hàm số đồng biến nên ta có :

\(g\left(0\right)\le g\left(X\right)\le g\left(3\right)\Leftrightarrow0\le f\left(x\right)\le9\)Suy ra với \(-2\le x\le2\)thì \(0\le f\left(x\right)\le9\)