Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(f\left(x\right)=5x^3-7x^2+2x+5\)
\(\Rightarrow f\left(1\right)=5.1^3-7.1^2+2.1+5\)
\(\Rightarrow f\left(1\right)=5.1-7.1+2+5\)
\(\Rightarrow f\left(1\right)=5-7+7\)
\(\Rightarrow f\left(1\right)=5\)
Vậy f(1) = 5.
\(g\left(x\right)=7x^3-7x^2+2x+5\)
\(\Rightarrow g\left(\frac{1}{2}\right)=7.\left(\frac{1}{2}\right)^3-7.\left(\frac{1}{2}\right)^2+2.\frac{1}{2}+5\)
\(\Leftrightarrow g\left(\frac{1}{2}\right)=7.\frac{1}{8}-7.\frac{1}{4}+1+5\)
\(\Leftrightarrow g\left(\frac{1}{2}\right)=\frac{7}{8}-\frac{14}{8}+6\)
\(\Leftrightarrow g\left(\frac{1}{2}\right)=\frac{-7}{8}+\frac{48}{8}\)
\(\Leftrightarrow g\left(\frac{1}{2}\right)=\frac{41}{8}\)
Vậy \(g\left(\frac{1}{2}\right)=\frac{41}{8}\)
\(h\left(x\right)=2x^3+4x+1\)
\(\Rightarrow h\left(0\right)=2.0^3+4.0+1\)
\(\Rightarrow h\left(0\right)=0+0+1\)
\(\Rightarrow h\left(0\right)=1\)
Vậy \(h\left(0\right)=1\)
Giải như sau.
(1)+(2)⇔x2−2x+1+√x2−2x+5=y2+√y2+4⇔(x2−2x+5)+√x2−2x+5=y2+4+√y2+4⇔√y2+4=√x2−2x+5⇒x=3y(1)+(2)⇔x2−2x+1+x2−2x+5=y2+y2+4⇔(x2−2x+5)+x2−2x+5=y2+4+y2+4⇔y2+4=x2−2x+5⇒x=3y
⇔√y2+4=√x2−2x+5⇔y2+4=x2−2x+5, chỗ này do hàm số f(x)=t2+tf(x)=t2+t đồng biến ∀t≥0∀t≥0
Công việc còn lại là của bạn !
a) Ta có:+) f(x) = 2x2(x - 1) - 5(x - 2) - 2x(x - 2)
f(x) = 2x3 - 2x2 - 5x + 10 - 2x2 + 2x
f(x) = 2x3 - 4x2 - 3x + 10
f(x) = 2x3 - 2x2 - 5x + 10
+) g(x) = x2(2x - 3) - x(x + 1) - (3x - 2)
g(x) = 2x3 - 3x2 - x2 - x - 3x + 2
g(x) = 2x3 - 4x2 - 4x + 2
b) f(2) = 2.23 - 4. 22 - 3.2 + 10 = 16 - 16 - 6 + 10 = 4
g(-2) = 2.(-2)3 - 4.(-2)2 - 4.(-2) + 2 = 2 . 8 - 4.4 + 8 + 2 = 10
c) H(x) = f(x) - g(x) = (2x3 - 4x2 - 3x + 10) - (2x3 - 4x2 - 4x + 2)
H(x) = 2x3 - 4x2 - 3x + 10 - 2x3 + 4x2 + 4x - 2
H(x) = (2x3 - 2x3) - (4x2 - 4x2) - (3x - 4x) + (10 - 2)
H(x) = x + 8
=> f(x) - g(x) = A(x) = -x - 8
d) Ta có: H(x) = 0
=> x + 8 = 0
=> x = -8
a) f(x)+g(x)=(2x2-x+3)+(x2-3)
=2x2-x+3+x2-3
=(2x2+x2)-x+(3+-3)
=3x2-x
=>h(x)=3x2-x
b) f(x)-g(x)=(2x2-x+3)-(x2-3)
=2x2-x+3-x2+3
=(2x2-x2)-x+(3+3)
=x2-x+6
=>q(x)=x2-x+6
c)Ta có:h(x)=0 =>3x2-x =0
=>3xx-x =0
=>x(3-1)x =0
=>2xx =0
=>x2 =0
=>x =0
vậy nghiệm của h(x) là 0
\(a,h\left(x\right)=f\left(x\right)+g\left(x\right)\)
\(=2x^2-x+3+x^2-3\)
\(=3x^2-x\)
\(q\left(x\right)=f\left(x\right)-g\left(x\right)\)
\(=2x^2-x+3-x^2+3\)
\(=x^2-x+6\)
c, \(h\left(x\right)=3x^2-x=0\)
\(\Leftrightarrow x\left(3x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\3x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{1}{3}\end{matrix}\right.\)
Vậy nghiệm của h(x) là x = 0 hoặc x = \(\dfrac{1}{3}\)