Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
f) ĐKXĐ: \(x\ge-\frac{3}{2}\)
Khi đó VT > 0 nên \(VT>0\Rightarrow\left[{}\begin{matrix}x\ge2\\x\le-3\left(L\right)\end{matrix}\right.\)
Lũy thừa 6 cả 2 vế lên PT tương đương:
\( \left( x-3 \right) \left( {x}^{11}+9\,{x}^{10}+6\,{x}^{9}-142\,{x}^{ 8}-231\,{x}^{7}+1113\,{x}^{6}+2080\,{x}^{5}-4604\,{x}^{4}-6908\,{x}^{3 }+13222\,{x}^{2}+10983\,x-15327 \right) =0\)
Cái ngoặc to vô nghiệm vì nó tương đương:
\(\left( x-2 \right) ^{11}+31\, \left( x-2 \right) ^{10}+406\, \left( x -2 \right) ^{9}+2906\, \left( x-2 \right) ^{8}+12281\, \left( x-2 \right) ^{7}+31031\, \left( x-2 \right) ^{6}+46656\, \left( x-2 \right) ^{5}+46648\, \left( x-2 \right) ^{4}+46452\, \left( x-2 \right) ^{3}+44590\, \left( x-2 \right) ^{2}+36015\,x-55223 = 0\)(vô nghiệm với mọi \(x\ge2\))
Vậy x = 3.
PS: Nghiệm đẹp thế này chắc có cách AM-Gm độc đáo nhưng mình chưa nghĩ ra
@Akai Haruma, @Nguyễn Việt Lâm
giúp em vs ạ! Cần gấp ạ
em cảm ơn nhiều!
Cô hướng dẫn nhé :)
a. ĐK: \(x>0;x\ne1\)
Ta có \(E=\frac{x+2\sqrt{x}+1-\left(x-2\sqrt{x}+1\right)+4\sqrt{x}\left(x-1\right)}{x-1}:\frac{x-1}{\sqrt{x}}\)
\(\Leftrightarrow E=\frac{4x\sqrt{x}}{x-1}.\frac{\sqrt{x}}{x-1}=\frac{4x^2}{\left(x-1\right)^2}\)
b. Để \(E=2\Rightarrow\frac{4x^2}{\left(x-1\right)^2}=2\Leftrightarrow2x^2+4x-2=0\Leftrightarrow\orbr{\begin{cases}x=\sqrt{2}-1\\x=-\sqrt{2}-1\left(L\right)\end{cases}}\)
c. \(x=\sqrt{4+\sqrt{15}}\left(\sqrt{10}-\sqrt{6}\right)\sqrt{\left(4+\sqrt{15}\right)\left(4-\sqrt{15}\right)}\)
\(=\left(\sqrt{5}-\sqrt{3}\right)\sqrt{8+2\sqrt{15}}=\left(\sqrt{5}-\sqrt{3}\right)\left(\sqrt{5}+\sqrt{3}\right)=2\)
Vậy E = 16.
a)Rút gọn E ta đc:
\(\frac{4x^2+\sqrt{x}\left(2x+2\right)-4x}{x^2-2x+1}\)
b)Với E=2\(\Leftrightarrow\)\(\frac{4x^2+\sqrt{x}\left(2x+2\right)-4x}{x^2-2x+1}=2\)
\(\Leftrightarrow\frac{4x^2}{x^2-2x+1}+\frac{2\sqrt{x^3}}{x^2-2x+1}-\frac{4x}{x^2-2x+1}+\frac{2\sqrt{x}}{x^2-2x+1}-2=0\)
\(\Leftrightarrow\frac{2\left(x^2\sqrt{x^3}+\sqrt{x}-1\right)}{x^2-2x+1}=0\)
\(\Leftrightarrow x^2+\sqrt{x^3}+\sqrt{x}-1=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-\sqrt{-\sqrt{x^3}-\sqrt{x}+1}=0\left(tm\right)\\\sqrt{-\sqrt{x^3}-\sqrt{x}+1}+x=0\left(loai\right)\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}2x-\sqrt{5}-3=0\left(loai\right)\\2x+\sqrt{5}-3=0\left(tm\right)\end{cases}}\)
\(\Leftrightarrow x=-\frac{\sqrt{5}-3}{2}\left(tm\right)\)
\(ĐKXĐ:\hept{\begin{cases}x>0\\x\ne1\end{cases}}\)
\(M=\frac{x\sqrt{x}-1}{x-\sqrt{x}}-\frac{x\sqrt{x}+1}{x+\sqrt{x}}+\frac{x+1}{\sqrt{x}}\)
\(=\frac{\left(\sqrt{x}\right)^3-1}{\sqrt{x}.\left(\sqrt{x}-1\right)}-\frac{\left(\sqrt{x}\right)^3+1}{\sqrt{x}.\left(\sqrt{x}+1\right)}+\frac{x+1}{\sqrt{x}}\)
\(=\frac{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{\sqrt{x}.\left(\sqrt{x}-1\right)}-\frac{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}{\sqrt{x}.\left(\sqrt{x}+1\right)}+\frac{x+1}{\sqrt{x}}\)
\(=\frac{x+\sqrt{x}+1}{\sqrt{x}}-\frac{x-\sqrt{x}+1}{\sqrt{x}}+\frac{x+1}{\sqrt{x}}\)
\(=\frac{\left(x+\sqrt{x}+1\right)-\left(x-\sqrt{x}+1\right)+\left(x+1\right)}{\sqrt{x}}\)
\(=\frac{x+\sqrt{x}+1-x+\sqrt{x}-1+x+1}{\sqrt{x}}\)
\(=\frac{x+2\sqrt{x}+1}{\sqrt{x}}=\frac{\left(\sqrt{x}+1\right)^2}{\sqrt{x}}\)
Để xem nào ...
Ta có HĐT : \(\hept{\begin{cases}a\sqrt{a}+b\sqrt{b}=\left(\sqrt{a}+\sqrt{b}\right)\left(a-\sqrt{ab}+b\right)\\a\sqrt{a}-b\sqrt{b}=\left(\sqrt{a}-\sqrt{b}\right)\left(a+\sqrt{ab}+b\right)\end{cases}\left(a,b\ge0\right)}\)
\(M=\frac{x\sqrt{x}-1}{x-\sqrt{x}}-\frac{x\sqrt{x}+1}{x+\sqrt{x}}+\frac{x+1}{\sqrt{x}}\)
ĐKXĐ : x > 0 ; x khác 1
\(=\frac{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}-\frac{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}+1\right)}+\frac{x+1}{\sqrt{x}}\)
\(=\frac{x+\sqrt{x}+1}{\sqrt{x}}-\frac{x-\sqrt{x}+1}{\sqrt{x}}+\frac{x+1}{\sqrt{x}}\)
\(=\frac{x+\sqrt{x}+1-x+\sqrt{x}-1+x+1}{\sqrt{x}}\)
\(=\frac{x+2\sqrt{x}+1}{\sqrt{x}}=\frac{\left(\sqrt{x}+1\right)^2}{\sqrt{x}}\)