K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài làm

a) Xét ∆ABC vuông tại B có:

^BAC + ^C = 90°

Hay ^BAC + 30° = 90°

=> ^BAC = 60° 

Vì AD là phân giác của góc BAC.

=> ^DAC = 60°/2 = 30°

Xét tam giác ADC có:

^DAC + ^ACD + ^ADC = 180°

Hay 30° + 30° + ^ADC = 180°

=> ^ADC = 180° - 30° - 30°

=> ^ADC = 120°

b) Xét tam giác ABD và tam giác AED có:

AB = AE ( gt )

^BAD = ^EAD ( Do AD phân giác )

Cạnh AD chung.

=> ∆ABD = ∆AED ( c.g.c )

c) Vì ∆ABD = ∆AED ( cmt )

=> ^ABD = ^AED = 90°

=> DE vuông góc với AC tại E                (1)

Ta có: ^DAC = ^DCA = 30°

=> ∆DAC cân tại D.

=> AD = DC

Xét tam giác DEA và tam giác DEC có:

Góc vuông: ^DEA = ^DEC ( = 90° )

Cạnh huyền AD = DC ( cmt )

Góc nhọn: ^DAC = ^DCA ( cmt )

=> ∆DEA = ∆DEC ( g.c.g )

=> AE = EC 

=> E là trung điểm của AC.                       (2)

Từ (1) và (2) => DE là trung trực của AC ( đpcm )

27 tháng 9 2021

Ta có \(\widehat{A}+\widehat{ABC}+\widehat{C}=180^0\Rightarrow180^0-3\widehat{C}+\widehat{C}=180^0-70^0=110^0\)

\(\Rightarrow2\widehat{C}=70^0\Rightarrow\widehat{C}=35^0\Rightarrow\widehat{A}=180^0-3\cdot35^0=75^0\)

Ta có BE là p/g nên \(\widehat{B_1}=\widehat{B_2}=\dfrac{1}{2}\widehat{ABC}=35^0\)

Mà \(ED//BC\) nên \(\widehat{B_2}=\widehat{E_2}=35^0\left(so.le.trong\right)\left(1\right)\)

Ta có \(ED//BC\Rightarrow\widehat{E_1}=\widehat{C}=35^0\left(đồng.vị\right)\left(2\right)\)

\(\left(1\right)\left(2\right)\Rightarrow\widehat{E_1}=\widehat{E_2}\left(=35^0\right)\)

Vậy ...

 

30 tháng 6 2018

a)Vì trung trực của AC cắt BC tại M=>MA+MC =>Tam giác MAC cân tại M mà có góc đáy bằng góc C mà góc C là góc đáy của tam giác cân tại A=>AMC=BAC(Hai góc ở đỉnh của hai tam giác cân)
b)Xét tam giác CAN và tam giác ABM có:
AB=AC(gt)
MB=AN(gt)
Mà NAC=C+A(vì góc MAC=góc A)
ABM=C+A
=>NAC= ABM
=>Tam giác CAN=tam giác ABM(c.g.c)
=>MA=NC mà MA=MC(c/m trên)=>CM=NC
c)Thêm điều kiện góc A=450

A) Vì trung trực của AC cắt BC tại M ==> Tam giác MAC cân tại M mà nó lại có góc đáy bằng góc C mà góc C lại là góc đáy của tam giác cân tại A ==> AMC = BAC(Hai góc ở đỉnh của hai tam giác cân)

B) Xét tam giác CAN và tam giác ABM có:

AB = AC (gt)

MB = AN (gt)

Mà NAC = C + A (vì góc MAC bằng với góc A)

ABM = C + A

- NAC = ABM

- Tam giác Can = Tam giác ABM (c.g.c)

MA = NC mà MA = CM (c/m trên) ==> CM = NC

C)Thêm điều kiện góc phải là 450