Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1:
\(S_{10}=\dfrac{u_1\cdot\left(1-q^{10}\right)}{1-q}=\dfrac{-3\cdot\left(1-\dfrac{1}{1024}\right)}{1-\dfrac{1}{2}}\)
\(=-6\cdot\dfrac{1023}{1024}=\dfrac{-3069}{512}\)
2:
\(\left\{{}\begin{matrix}u1=6\\u2=18\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}u1=6\\u1\cdot q=18\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}u1=6\\q=3\end{matrix}\right.\)
\(S_{12}=\dfrac{u_1\left(1-q^{12}\right)}{1-q}=\dfrac{6\cdot\left(1-3^{12}\right)}{1-3}=-3\cdot\left(1-3^{12}\right)\)
\(=3^{13}-3\)
1:
\(S_8=\dfrac{u_1\cdot\left(1-q^8\right)}{1-q}=\dfrac{2048\cdot\left(1-\left(\dfrac{5}{4}\right)^8\right)}{1-\dfrac{5}{4}}\)
\(=-8192\left(1-\left(\dfrac{5}{4}\right)^8\right)\)
2:
\(u2=u1\cdot q\)
=>\(q=\dfrac{3}{-1}=-3\)
\(S_{10}=\dfrac{u1\left(1-q^{10}\right)}{1-q}=\dfrac{-1\cdot\left(1-\left(-3\right)^{10}\right)}{1-\left(-3\right)}\)
\(=\dfrac{-1}{4}\left(1-3^{10}\right)\)
Câu 1:
\(S_8=u_1+u_2+u_3+...+u_8\)
\(=\dfrac{u_1\left(1-q^8\right)}{1-q}=\dfrac{2048\cdot\left(1-\left(\dfrac{5}{4}\right)^8\right)}{1-\dfrac{5}{4}}\)
\(=\dfrac{325089}{8}\)
2: \(S_{10}=u_1+u_2+...+u_9+u_{10}\)
=>\(S_{10}=\dfrac{u_1\left(1-q^{10}\right)}{1-q}=\dfrac{-3\cdot\left(1-\left(\dfrac{1}{2}\right)^{10}\right)}{1-\dfrac{1}{2}}\)
\(=-6\cdot\left(1-\dfrac{1}{2^{10}}\right)=-6+\dfrac{6}{2^{10}}=-\dfrac{3069}{512}\)
1) \(\left(u_n\right):\left\{{}\begin{matrix}u_1=-7\\q=2\end{matrix}\right.\)
\(u_5=-7.q^4=-7.16=-112\)
\(u_m=u_1.q^{m-1}\)
\(\Leftrightarrow-7.2^{m-1}=-3584\)
\(\Leftrightarrow2^{m-1}=512=2^9\)
\(\Leftrightarrow m-1=9\)
\(\Leftrightarrow m=10\)
Vậy số \(-3584\) là số thứ \(10\) của cấp số nhân
\(\left(u_n\right):\left\{{}\begin{matrix}u_1=-3\\q=-2\end{matrix}\right.\)
\(u_{10}=-u_1.q^9=-3.\left(-2\right)^9=1536\)
\(u_m=u_1.q^{m-1}\)
\(\Leftrightarrow-3.\left(-2\right)^{m-1}=-3072\)
\(\Leftrightarrow\left(-2\right)^{m-1}=1024=\left(-2\right)^{10}\)
\(\Leftrightarrow m-1=10\)
\(\Leftrightarrow m=11\)
Vậy số \(-3072\) là số thứ \(11\) của cấp số nhân.
Trong bài này ta áp dụng công thức tinh số hạng tổng quát un = u1.qn-1, biết hai đại lượng, ta sẽ tìm đại lượng còn lại:
a) q = 3.
b) u1 =
c) Theo đề bài ta có un = 192, từ đó ta tìm được n. Đáp số: n =7
a)
\(\dfrac{u_6}{u_1}=q^5=\dfrac{486}{2}=243=3^5\) . Suy ra: \(q=3\).
b)
\(u_4=u_1q^3=u_1.\left(\dfrac{2}{3}\right)^3=\dfrac{8}{21}\)\(\Rightarrow u_1=\dfrac{9}{7}\).
c) \(u_n=3.\left(-2\right)^{n-1}=192\)\(\Leftrightarrow\left(-2\right)^{n-1}=64=\left(-2\right)^6\)\(\Leftrightarrow n-1=6\)\(\Leftrightarrow n=7\).
Vậy số hạng thứ 7 bằng 192.
1. Gọi công bội của csn đó là $q$ thì:
$u_6=q^4u_2$
$\Leftrightarrow 32=q^4.2\Leftrightarrow q^4=16$
$\Leftrightarrow q=\pm 2$
2.
$u_{2019}=q^{2018}u_1=2.3^{2018}$
Câu 2:
\(\left\{{}\begin{matrix}u_1+u_5-u_3=10\\u_1+u_6=17\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}u_1+u_1+4d-u_1-2d=10\\u_1+u_1+5d=17\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}u_1+2d=10\\2u_1+5d=17\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}2u_1+4d=20\\2u_1+5d=17\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2u_1+4d-2u_1-5d=20-17\\2u_1+5d=17\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}-d=3\\2u_1+5d=17\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}d=-3\\2u_1=17-5d=17+5\cdot3=32\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}u_1=16\\d=-3\end{matrix}\right.\)
Câu 1:
Để a,b,c lập thành cấp số cộng thì
\(\left[{}\begin{matrix}a+c=2b\\a+b=2c\\b+c=2a\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}x+1+x^2-1=2\cdot\left(3x-2\right)\\x+1+3x-2=2\left(x^2-1\right)\\x^2-1+3x-2=2\left(x+1\right)\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}x^2+x-6x+4=0\\2x^2-2=4x-1\\x^2+3x-3-2x-2=0\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}x^2-5x+4=0\\2x^2-4x-1=0\\x^2+x-5=0\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}\left(x-1\right)\left(x-4\right)=0\\2x^2-4x-1=0\\x^2+x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x\in\left\{1;4\right\}\\x\in\left\{\dfrac{2+\sqrt{6}}{2};\dfrac{2-\sqrt{6}}{2}\right\}\\x\in\left\{\dfrac{-1+\sqrt{21}}{2};\dfrac{-1-\sqrt{21}}{2}\right\}\end{matrix}\right.\)
\(Bài.1:u_n=\dfrac{3}{2}.\left(\dfrac{1}{2}\right)^n=\dfrac{3}{512}\\ \Rightarrow\left(\dfrac{1}{2}\right)^n=\dfrac{3}{512}:\dfrac{3}{2}=\dfrac{1}{256}=\dfrac{1}{2^8}\\ Mà:\left(\dfrac{1}{2}\right)^n=\left(\dfrac{1}{2}\right)^8\\ Vậy:n=8\\ \Rightarrow Vậy:\dfrac{3}{512}.là.số.hạng.thứ.8\)