Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\dfrac{1}{8.14}+\dfrac{1}{14.20}+\dfrac{1}{20.26}+...+\dfrac{1}{50.56}\)
\(A=\dfrac{1}{6}.\left(\dfrac{6}{8.14}+\dfrac{6}{14.20}+\dfrac{6}{20.26}+...+\dfrac{6}{50.56}\right)\)
\(A=\dfrac{1}{6}.\left(\dfrac{1}{8}-\dfrac{1}{14}+\dfrac{1}{14}-\dfrac{1}{20}+\dfrac{1}{20}-\dfrac{1}{26}+...+\dfrac{1}{50}-\dfrac{1}{56}\right)\)
\(A=\dfrac{1}{6}.\left(\dfrac{1}{8}-\dfrac{1}{56}\right)\)
\(A=\dfrac{1}{6}.\left(\dfrac{7}{56}-\dfrac{1}{56}\right)\)
\(A=\dfrac{1}{6}.\dfrac{6}{56}\)
\(A=\dfrac{1}{1}.\dfrac{1}{56}\)
\(A=\dfrac{1}{56}\)
\(B=\dfrac{45}{12.21}+\dfrac{45}{21.30}-\dfrac{40}{24.34}-\dfrac{40}{34.44}-\dfrac{40}{44.54}-\dfrac{40}{54.64}\)
\(B=5\left(\dfrac{9}{12.21}+\dfrac{9}{21.30}\right)-4\left(\dfrac{10}{24.34}+\dfrac{10}{34.44}+\dfrac{10}{44.54}+\dfrac{10}{54.64}\right)\)
\(B=5\left(\dfrac{1}{12}-\dfrac{1}{21}+\dfrac{1}{21}-\dfrac{1}{30}\right)-4\left(\dfrac{1}{24}-\dfrac{1}{34}+\dfrac{1}{34}-\dfrac{1}{44}+\dfrac{1}{44}-\dfrac{1}{54}+\dfrac{1}{54}-\dfrac{1}{64}\right)\)\(B=5\left(\dfrac{5}{60}-\dfrac{2}{60}\right)-4\left(\dfrac{1}{24}-\dfrac{1}{64}\right)\)
\(B=5.\dfrac{3}{60}-\left(\dfrac{4}{24}-\dfrac{4}{64}\right)\)
\(B=5.\dfrac{1}{20}-\left(\dfrac{1}{6}-\dfrac{1}{16}\right)\)
\(B=\dfrac{5}{20}-\left(\dfrac{8}{48}-\dfrac{3}{48}\right)\)
\(B=\dfrac{1}{4}-\dfrac{5}{48}\)
\(B=\dfrac{12}{48}-\dfrac{5}{48}\)
\(B=\dfrac{7}{48}\)
\(\dfrac{A}{B}=\dfrac{1}{56}:\dfrac{7}{48}\)
\(\dfrac{A}{B}=\dfrac{1}{56}.\dfrac{48}{7}\)
\(\dfrac{A}{B}=\dfrac{1}{7}.\dfrac{6}{7}\)
\(\dfrac{A}{B}=\dfrac{6}{49}=\dfrac{48}{392}< \dfrac{49}{392}=\dfrac{1}{8}\)
\(\dfrac{A}{B}< \dfrac{1}{8}\)
Vậy \(\dfrac{A}{B}< \dfrac{1}{8}\)
\(A=\left|\dfrac{3}{5}-x\right|+\dfrac{1}{9}\ge\dfrac{1}{9}\\ A_{min}=\dfrac{1}{9}\Leftrightarrow x=\dfrac{3}{5}\\ B=\dfrac{2009}{2008}-\left|x-\dfrac{3}{5}\right|\le\dfrac{2009}{2008}\\ B_{max}=\dfrac{2009}{2008}\Leftrightarrow x=\dfrac{3}{5}\\ C=-2\left|\dfrac{1}{3}x+4\right|+1\dfrac{2}{3}\le1\dfrac{2}{3}\\ C_{max}=1\dfrac{2}{3}\Leftrightarrow\dfrac{1}{3}x=-4\Leftrightarrow x=-12\)
\(A=0,6+\left|\dfrac{1}{2}-x\right|\\ Vì:\left|\dfrac{1}{2}-x\right|\ge\forall0x\in R\\ Nên:A=0,6+\left|\dfrac{1}{2}-x\right|\ge0,6\forall x\in R\\ Vậy:min_A=0,6\Leftrightarrow\left(\dfrac{1}{2}-x\right)=0\Leftrightarrow x=\dfrac{1}{2}\)
\(B=\dfrac{2}{3}-\left|2x+\dfrac{2}{3}\right|\\ Vì:\left|2x+\dfrac{2}{3}\right|\ge0\forall x\in R\\ Nên:B=\dfrac{2}{3}-\left|2x+\dfrac{2}{3}\right|\le\dfrac{2}{3}\forall x\in R\\ Vậy:max_B=\dfrac{2}{3}\Leftrightarrow\left|2x+\dfrac{2}{3}\right|=0\Leftrightarrow x=-\dfrac{1}{3}\)
a) Ta có: \(\left(2x-1\right)^2\ge0\forall x\)
\(\Rightarrow-3\left(2x-1\right)^2\le0\forall x\)
\(\Rightarrow-3\left(2x-1\right)^2+5\le5\forall x\)
Dấu '=' xảy ra khi 2x-1=0
\(\Leftrightarrow2x=1\)
hay \(x=\dfrac{1}{2}\)
Vậy: Giá trị lớn nhất của biểu thức \(A=5-3\left(2x-1\right)^2\) là 5 khi \(x=\dfrac{1}{2}\)
\(P=\dfrac{1000}{100-x}\)
\(P_{MAX}\Rightarrow P\in Z^+\)
\(\Rightarrow100-x=1\)
\(\Rightarrow x=100-1=99\)
\(\Rightarrow P_{MAX}=\dfrac{1000}{100-99}=1000\)
\(A=\dfrac{1}{8.14}+\dfrac{1}{14.20}+\dfrac{1}{20.26}+.....+\dfrac{1}{50.56}\)
\(A=\dfrac{1}{6}\left(\dfrac{1}{8}-\dfrac{1}{14}+\dfrac{1}{14}-\dfrac{1}{20}+\dfrac{1}{20}-\dfrac{1}{26}+.....+\dfrac{1}{50}-\dfrac{1}{56}\right)\)
\(A=\dfrac{1}{6}.\left(\dfrac{1}{8}-\dfrac{1}{56}\right)=\dfrac{1}{6}.\dfrac{3}{28}=\dfrac{1}{56}\)
\(B=\dfrac{45}{12.21}+\dfrac{45}{21.30}-\dfrac{40}{24.34}-\dfrac{40}{34.44}-\dfrac{40}{44.54}-\dfrac{40}{54.64}\)
\(B=5\left(\dfrac{1}{12}-\dfrac{1}{21}+\dfrac{1}{21}-\dfrac{1}{30}\right)-5\left(\dfrac{1}{24}-\dfrac{1}{34}+\dfrac{1}{34}-\dfrac{1}{44}+\dfrac{1}{44}-\dfrac{1}{54}+\dfrac{1}{54}-\dfrac{1}{64}\right)\)
\(B=5\left(\dfrac{1}{12}-\dfrac{1}{21}+\dfrac{1}{21}-\dfrac{1}{30}+\dfrac{1}{24}-\dfrac{1}{34}+\dfrac{1}{34}-\dfrac{1}{44}+\dfrac{1}{44}-\dfrac{1}{54}+\dfrac{1}{54}-\dfrac{1}{64}\right)\)\(B=5\left(\dfrac{1}{12}-\dfrac{1}{64}\right)=5.\dfrac{13}{192}=\dfrac{65}{192}\)
\(\dfrac{A}{B}=\dfrac{1}{\dfrac{56}{\dfrac{65}{192}}}=\dfrac{24}{455}\)
\(\dfrac{1}{8}=\dfrac{3}{24}\)
\(\Rightarrow\dfrac{A}{B}< \dfrac{1}{8}\rightarrowđpcm\)