K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(K=\dfrac{a-\sqrt{a}+1}{\sqrt{a}\left(\sqrt{a}-1\right)}:\dfrac{\sqrt{a}+1+2}{a-1}\)

\(=\dfrac{a-\sqrt{a}+1}{\sqrt{a}}\cdot\dfrac{\sqrt{a}+1}{\sqrt{a}+3}\)

\(=\dfrac{a\sqrt{a}+1}{\sqrt{a}\left(\sqrt{a}+3\right)}\)

c: Vì \(\sqrt{a}+3>=3>0;\sqrt{a}>0;a\sqrt{a}+1>0\)

nên K>0 với mọi a thỏa mãn ĐKXĐ

=>Không có giá trị nào của a để K<0

23 tháng 6 2021

a) đk: \(a>0;a\ne1\)

b) Xét K = \(\left(\dfrac{\sqrt{a}}{\sqrt{a}-1}-\dfrac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}\right):\left(\dfrac{1}{\sqrt{a}+1}+\dfrac{2}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\right)\)

\(\dfrac{a-1}{\sqrt{a}\left(\sqrt{a}-1\right)}:\dfrac{\sqrt{a}-1+2}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\)

\(\dfrac{\sqrt{a}+1}{\sqrt{a}}:\dfrac{\sqrt{a}+1}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\)

\(\dfrac{\sqrt{a}+1}{\sqrt{a}}.\left(\sqrt{a}-1\right)\)

\(\dfrac{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}{\sqrt{a}}\)

Xét \(a=3+2\sqrt{2}=\left(1+\sqrt{2}\right)^2\)

<=> \(\sqrt{a}=1+\sqrt{2}\)

<=> K = \(\dfrac{\left(\sqrt{2}+2\right)\sqrt{2}}{\sqrt{2}+1}=2\)

c) Đẻ K < 0

<=> \(\dfrac{a-1}{\sqrt{a}}< 0\)

Mà \(\sqrt{a}>0\)

<=> a < 1

<=> 0 < a < 1

23 tháng 6 2021

thank you!

 

16 tháng 2 2022

undefined

17 tháng 2 2022

Cảm ơn bn nhìu nhoa!

AH
Akai Haruma
Giáo viên
28 tháng 10 2018

Lời giải:

a) ĐK: \(a>0; a\neq 1\)

\(K=\left(\frac{a}{\sqrt{a}(\sqrt{a}-1)}-\frac{1}{\sqrt{a}(\sqrt{a}-1)}\right): \left(\frac{\sqrt{a}+1}{(\sqrt{a}-1)(\sqrt{a}+1)}+\frac{2}{(\sqrt{a}-1)(\sqrt{a}+1)}\right)\)

\(=\frac{a-1}{\sqrt{a}(\sqrt{a}-1)}: \frac{\sqrt{a}+1+2}{(\sqrt{a}-1)(\sqrt{a}+1)}\)

\(=\frac{(\sqrt{a}-1)(\sqrt{a}+1)}{\sqrt{a}(\sqrt{a}-1)}. \frac{(\sqrt{a}-1)(\sqrt{a}+1)}{\sqrt{a}+3}\)

\(=\frac{(\sqrt{a}+1)^2(\sqrt{a}-1)}{\sqrt{a}(\sqrt{a}+3)}\)

b) \(a=3+2\sqrt{a}\Leftrightarrow a-2\sqrt{a}-3=0\)

\(\Leftrightarrow (\sqrt{a}-3)(\sqrt{a}+1)=0\)

\(\Rightarrow \sqrt{a}=3\)

Khi đó: \(K=\frac{(3+1)^2(3-1)}{3.(3+3)}=\frac{16}{9}\)

c) Để \(K< 0\Leftrightarrow \frac{(\sqrt{a}+1)^2(\sqrt{a}-1)}{\sqrt{a}(\sqrt{a}+3)}< 0\)

\(\frac{(\sqrt{a}+1)^2}{\sqrt{a}(\sqrt{a}+3)}>0, \forall a> 0; a\neq 1\), do đó \(\sqrt{a}-1< 0\Leftrightarrow 0< a< 1\)

Vậy .........

AH
Akai Haruma
Giáo viên
13 tháng 7 2018

Lời giải:

ĐK: \(a>0; a\neq 1\)

a) \(B=\left(\frac{\sqrt{a}}{\sqrt{a}-1}-\frac{1}{a-\sqrt{a}}\right): \left(\frac{1}{\sqrt{a}+1}+\frac{2}{a-1}\right)\)

\(B=\left(\frac{a}{a-\sqrt{a}}-\frac{1}{a-\sqrt{a}}\right): \left(\frac{\sqrt{a}-1}{(\sqrt{a}+1)(\sqrt{a}-1)}+\frac{2}{a-1}\right)\)

\(=\frac{a-1}{a-\sqrt{a}}:\left(\frac{\sqrt{a}-1}{a-1}+\frac{2}{a-1}\right)\)

\(=\frac{a-1}{a-\sqrt{a}}: \frac{\sqrt{a}+1}{a-1}=\frac{a-1}{a-\sqrt{a}}.\frac{a-1}{\sqrt{a}+1}=\frac{(a-1)^2}{\sqrt{a}(\sqrt{a}-1)(\sqrt{a}+1)}=\frac{(a-1)^2}{\sqrt{a}(a-1)}=\frac{a-1}{\sqrt{a}}\)

b) Ta có:
\(a=3+2\sqrt{2}=2+1+2\sqrt{2}=(\sqrt{2}+1)^2\)

\(\Rightarrow K=\frac{3+2\sqrt{2}-1}{\sqrt{2}+1}=\frac{2+2\sqrt{2}}{\sqrt{2}+1}=\frac{2(1+\sqrt{2})}{\sqrt{2}+1}=2\)

c) \(K< 0\leftrightarrow \frac{a-1}{\sqrt{a}}< 0\Leftrightarrow a-1< 0\) (do \(\sqrt{a}>0\))

\(\Leftrightarrow a< 1\)

Vậy \(0< a< 1\)

AH
Akai Haruma
Giáo viên
13 tháng 7 2018

Nhật Hạ : bạn ghi trên đề bài mà.

Thực ra nó chỉ là tên biểu thức nên không quan trọng.

a: \(K=\dfrac{a-1}{\sqrt{a}\left(\sqrt{a}-1\right)}:\dfrac{\sqrt{a}-1+2}{a-1}\)

\(=\dfrac{\sqrt{a}+1}{\sqrt{a}}\cdot\dfrac{a-1}{\sqrt{a}+1}=\dfrac{a-1}{\sqrt{a}}\)

b: Thay \(a=3+2\sqrt{2}\) vào K, ta được:

\(K=\dfrac{3+2\sqrt{2}-1}{\sqrt{2}+1}=\dfrac{2\sqrt{2}+2}{\sqrt{2}+1}=2\)

c: Để K<0 thì a-1<0

hay 0<a<1

21 tháng 9 2021

a) \(A=\left(\dfrac{\sqrt{a}}{2}-\dfrac{1}{2\sqrt{a}}\right).\left(\dfrac{a-\sqrt{a}}{\sqrt{a}+1}-\dfrac{a+\sqrt{a}}{\sqrt{a}-1}\right)\left(đk:a>0,x\ne1\right)\)

\(=\dfrac{a-1}{2\sqrt{a}}.\dfrac{\left(a-\sqrt{a}\right)\left(\sqrt{a}-1\right)-\left(a+\sqrt{a}\right)\left(\sqrt{a}+1\right)}{a-1}\)

\(=\dfrac{a\sqrt{a}-2a+\sqrt{a}-a\sqrt{a}-2a-\sqrt{a}}{2\sqrt{a}}\)

\(=\dfrac{-4a}{2\sqrt{a}}=-2\sqrt{a}\)

b) \(A=-2\sqrt{a}>-6\)

\(\Leftrightarrow\sqrt{a}< 3\Leftrightarrow0\le a< 9\) và \(a\ne1\)

c) \(a^2-3=0\Leftrightarrow a^2=3\Leftrightarrow\sqrt{a}=\sqrt[4]{3}\)

\(\Rightarrow A=-2\sqrt{a}=-2\sqrt[4]{3}\)

17 tháng 12 2023

a) ĐKXD: \(\left\{{}\begin{matrix}a>0\\a\ne1\\a\ne4\end{matrix}\right.\)

b) Với \(a>0;a\ne1;a\ne4\), ta có:

\(B=\left(\dfrac{1}{\sqrt{a}-1}-\dfrac{1}{\sqrt{a}}\right):\left(\dfrac{\sqrt{a}+1}{\sqrt{a}-2}-\dfrac{\sqrt{a}+2}{\sqrt{a}-1}\right)\\ =\dfrac{\sqrt{a}-\sqrt{a}+1}{\sqrt{a}\left(\sqrt{a}-1\right)}:\dfrac{a-1-a+4}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}\\ =\dfrac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}:\dfrac{3}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}\\ =\dfrac{\sqrt{a}-2}{3\sqrt{a}}\)

c)\(B\le\dfrac{1}{3}\rightarrow\dfrac{\sqrt{a}-2}{3\sqrt{a}}\le\dfrac{1}{3}\rightarrow\dfrac{-2}{\sqrt{a}}\le0\) (đúng với mọi a thoả ĐKXĐ).

18 tháng 12 2023

a, ĐKXĐ: 

\(\left\{{}\begin{matrix}\left|a\right|>1^2\\\left|a\right|>0\\\left|a\right|>2^2\end{matrix}\right.\Leftrightarrow a>4\)

b,

 \(B=\left(\dfrac{1}{\sqrt{a}-1}-\dfrac{1}{\sqrt{a}}\right):\left(\dfrac{\sqrt{a}+1}{\sqrt{a}-2}-\dfrac{\sqrt{a}+2}{\sqrt{a}-1}\right)\\ B=\dfrac{\sqrt{a}-\left(\sqrt{a}-1\right)}{\sqrt{a}\left(\sqrt{a}-1\right)}:\dfrac{\left[\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)-\left(\sqrt{a}+2\right)\left(\sqrt{a}-2\right)\right]}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}\\ B=\dfrac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}:\dfrac{\left(a-1\right)-\left(a-4\right)}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}\\ B=\dfrac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}.\dfrac{\left(\sqrt{a}-1\right)\left(\sqrt{a}-2\right)}{3}\\ B=\dfrac{\sqrt{a}-2}{3\sqrt{a}}\)

\(c,B\le\dfrac{1}{3}\\ \Leftrightarrow\dfrac{\sqrt{a}-2}{3\sqrt{a}}\le\dfrac{1}{3}\\ \Leftrightarrow3\left(\sqrt{a}-2\right)\le3\sqrt{a}\\ \Leftrightarrow\sqrt{a}-2\le\sqrt{a}\\ \Leftrightarrow\sqrt{a}-\sqrt{a}\le2\\ \Leftrightarrow0\le2\left(luôn.đúng\right)\)

Vậy: Với a>4 thì \(B\le\dfrac{1}{3}\)