Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:Giả sử trong 100 số tự nhiên $a_1,a_2,...,a_{100}$ không có 2 số nào bằng nhau. Khi đó:
\(\frac{1}{\sqrt{a_1}}+\frac{1}{\sqrt{a_2}}+...+\frac{1}{\sqrt{a_{100}}}< \frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+...+\frac{1}{\sqrt{100}}\)
Mà:
\(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+...+\frac{1}{\sqrt{100}}< 19\)
Do đó \(\frac{1}{\sqrt{a_1}}+\frac{1}{\sqrt{a_2}}+...+\frac{1}{\sqrt{a_{100}}}< 19\) (trái với giả thiết)
Suy ra điều giả sử là sai. Tức là trong 100 số tự nhiên có 2 số bằng nhau (đpcm)
Bạn có thể xem cách chứng minh \(\sum_{n=1}^{100} \frac{1}{\sqrt{n}}< 19\) tại đây:
Chứng minh rằng \(2\left(\sqrt{n 1}-\sqrt{n}\right)< \frac{1}{\sqrt{n}}< 2\left(\sqrt{n}-\sqrt{n-1}\right)\) (với \(n\in... - Hoc24
Đề sai rồi. Chỉ cần \(3\left(\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}\right)=\frac{49}{12}>4\) thì cần gì tới 4 số phải bằng nhau nữa.
Bạn xem lời giải tại đây:
cho 100 STN \(a_1,a_2,...,a_{100}\) thỏa mãn: \(\dfrac{1}{\sqrt{a_1}} \dfrac{1}{\sqrt{a_2}} ... \dfrac{1}{\sqrt{a_{100}... - Hoc24
Giả sử 100 số tự nhiên đã cho đôi một khác nhau và \(a_1\ge1\),\(a_2\ge2\),..\(a_{100}\ge100\)( vì a là số tự nhiên)
\(\Rightarrow S=\dfrac{1}{\sqrt{a_1}}+\dfrac{1}{\sqrt{a_2}}+...+\dfrac{1}{\sqrt{a_{100}}}\le\dfrac{1}{\sqrt{1}}+\dfrac{1}{\sqrt{2}}+...+\dfrac{1}{\sqrt{100}}\)
Ta có điều sau:\(\dfrac{1}{2\sqrt{n}}=\dfrac{1}{\sqrt{n}+\sqrt{n}}< \dfrac{1}{\sqrt{n-1}+\sqrt{n}}=\sqrt{n}-\sqrt{n-1}\)
\(\Rightarrow S< 1+2.\left(\sqrt{2}-1+\sqrt{3}-\sqrt{2}+...+\sqrt{100}-\sqrt{99}\right)\)
\(=1+2.\left(10-1\right)=19\)( trái với giả thiết)
nên có ít nhất 2 trong 100 số đã cho bằng nhau .
Đặt \(\dfrac{1}{x+1}=a,\dfrac{1}{y+1}=b,\dfrac{1}{z+1}=c\Rightarrow a,b,c>0;a+b+c=1.\)
\(x=\dfrac{1}{a}-1\)
Cần chứng minh: \(\sum\sqrt{\dfrac{1}{a}-1}\le\dfrac{3}{2}\sqrt{\left(\dfrac{1}{a}-1\right)\left(\dfrac{1}{b}-1\right)\left(\dfrac{1}{c}-1\right)}\)
Hay \(\sum\sqrt{\dfrac{1}{a}-\dfrac{1}{a+b+c}}\le\dfrac{3}{2}\sqrt{\prod\left(\dfrac{1}{a}-\dfrac{1}{a+b+c}\right)}\)
Hay là \(\sum\sqrt{\dfrac{b+c}{a\left(a+b+c\right)}}\le\dfrac{3}{2}\sqrt{\prod\dfrac{\left(b+c\right)}{a\left(a+b+c\right)}}\)
Tương đương: \(\sum\sqrt{\dfrac{b+c}{a}}\le\dfrac{3}{2}\sqrt{\prod\dfrac{\left(b+c\right)}{a}}\)
\(\left[\sum\left(b+c\right)\left\{a+2\left(b+c\right)\right\}\right]\left[\sum\dfrac{1}{a\left\{a+2\left(b+c\right)\right\}}\right]\ge\left[\sum\sqrt{\dfrac{b+c}{a}}\right]^2\)
Từ đây cần chứng minh:
\(\dfrac{9}{4}\prod\dfrac{\left(b+c\right)}{a}\ge\left[\sum\left(b+c\right)\left\{a+2\left(b+c\right)\right\}\right]\left[\sum\dfrac{1}{a\left\{a+2\left(b+c\right)\right\}}\right]\)
Còn lại bạn tự làm hoặc không để tối rảnh mình làm.
Do hoc24.vn không cho cập nhật câu trả lời nữa nên mình đăng tiếp:
Thực hiện thay thế \(\left(a,b,c\right)\rightarrow\left(s-a',s-b',s-c'\right)\) với $a',b',c'$ là độ dài ba cạnh của một tam giác.
Đặt $\left\{ \begin{array}{l}a' + b' + c' = 2s\\a'b' + b'c' + c'a' = {s^2} + 4Rr + {r^2}\\a'b'c' = 4sRr\end{array} \right.$
Bất đẳng thức quy về:
$${\dfrac { \left( 4\,R-24\,r \right) {s}^{4}+r \left( 72\,{R}^{2}+41\,Rr+8\,{r}^{2} \right) {s}^{2}+2\,{r}^{2} \left( 4\,R+r \right) ^{3}}{r{s}^{2} \left( 4\,{s}^{2}+r \left( 8\,R+r \right) \right) }}\geqslant 0$$
\( \Leftrightarrow \left( {4{\mkern 1mu} R - 24{\mkern 1mu} r} \right){s^4} + r\left( {72{\mkern 1mu} {R^2} + 41{\mkern 1mu} Rr + 8{\mkern 1mu} {r^2}} \right){s^2} + 2{\mkern 1mu} {r^2}{\left( {4{\mkern 1mu} R + r} \right)^3} \geqslant 0\)
Hay là \({s^2}\left( {R - 2{\mkern 1mu} r} \right)\left( {9{\mkern 1mu} {r^2} + 4{\mkern 1mu} {s^2}} \right) + r\left[ {10{\mkern 1mu} {s^2}\left( {4{\mkern 1mu} {R^2} + 4{\mkern 1mu} Rr + 3{\mkern 1mu} {r^2} - {s^2}} \right) + \left( {8{\mkern 1mu} Rr + 2{\mkern 1mu} {r^2} + 2{\mkern 1mu} {s^2}} \right)\left( {16{\mkern 1mu} {R^2} + 8{\mkern 1mu} Rr + {r^2} - 3{\mkern 1mu} {s^2}} \right)} \right] \geqslant 0\)
Đây là điều hiển nhiên.
Ngoài ra phương pháp SOS, SS cũng có thể sử dụng ở đây.
a) 9x2 - 36
=(3x)2-62
=(3x-6)(3x+6)
=4(x-3)(x+3)
b) 2x3y-4x2y2+2xy3
=2xy(x2-2xy+y2)
=2xy(x-y)2
c) ab - b2-a+b
=ab-a-b2+b
=(ab-a)-(b2-b)
=a(b-1)-b(b-1)
=(b-1)(a-b)
P/s đùng để ý đến câu trả lời của mình
\(2a=1-\sqrt{2}\Rightarrow\sqrt{2}=1-2a\Rightarrow2=4a^2-4a+1\Rightarrow a^2-a=\dfrac{1}{4}\)
\(16a^8=16a^6\left(a^2-a\right)+16a^7=16a^7+4a^6=16a^5\left(a^2-a\right)+20a^6=20a^6+4a^5\)
\(=20a^4\left(a^2-a\right)+24a^5=24a^5+5a^4=24a^3\left(a^2-a\right)+29a^4\)
\(=29a^4+6a^3=29a^2\left(a^2-a\right)+35a^3=35a^3+\dfrac{29}{4}a^2\)
\(=35a\left(a^2-a\right)+\dfrac{169}{4}a^2=\dfrac{169}{4}a^2+\dfrac{35}{4}a=\dfrac{169}{4}\left(a^2-a\right)+51a=\dfrac{169}{16}+51a\)
\(\Rightarrow A=\sqrt{\dfrac{169}{16}+51a-51a}=\dfrac{13}{4}\)
2/
Với \(a\in Z^+\) , ta có:
\(\dfrac{1}{\sqrt{a}}=\dfrac{2}{2\sqrt{a}}< \dfrac{2}{\sqrt{a-1}+\sqrt{a}}=2\left(\sqrt{a}-\sqrt{a-1}\right)\)
\(\Rightarrow\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{3}}+...+\dfrac{1}{\sqrt{100}}< 2\left(\sqrt{2}-\sqrt{1}+\sqrt{3}-\sqrt{2}+...+\sqrt{100}-\sqrt{99}\right)\)
\(\Rightarrow\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{3}}+...+\dfrac{1}{\sqrt{100}}< 2\left(\sqrt{100}-\sqrt{1}\right)=18\)
\(\Rightarrow\dfrac{1}{\sqrt{1}}+\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{3}}+...+\dfrac{1}{\sqrt{100}}< 19\)
Áp dụng vào bài toán, ta có:
\(\dfrac{1}{\sqrt{a_1}}+\dfrac{1}{\sqrt{a_2}}+...+\dfrac{1}{\sqrt{a_{100}}}=19\left(1\right)\)
Giả sử tất cả các số tự nhiên \(a_k\left(k=1...100\right)\) đều khác nhau và \(a_k\ne0\), không làm mất tính tổng quát, giả sử \(1\le a_1< a_2< a_3< ...< a_{100}\)
\(\Rightarrow\left\{{}\begin{matrix}a_1\ge1\\a_2\ge2\\...\\a_{100}\ge100\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\dfrac{1}{\sqrt{a_1}}\le\dfrac{1}{\sqrt{1}}\\\dfrac{1}{\sqrt{a_2}}\le\dfrac{1}{\sqrt{2}}\\...\\\dfrac{1}{\sqrt{a_{100}}}\le\dfrac{1}{\sqrt{100}}\end{matrix}\right.\)
\(\Rightarrow\dfrac{1}{\sqrt{a_1}}+\dfrac{1}{\sqrt{a_2}}+...+\dfrac{1}{\sqrt{a_{100}}}\le\dfrac{1}{\sqrt{1}}+\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{3}}+...+\dfrac{1}{\sqrt{100}}< 19\)
\(\Rightarrow\dfrac{1}{\sqrt{a_1}}+\dfrac{1}{\sqrt{a_2}}+...+\dfrac{1}{\sqrt{a_{100}}}< 19\)
Mâu thuẫn với \(\left(1\right)\Rightarrow\) điều giả sử là sai.
Vậy phải tồn tại ít nhất 2 số bằng nhau