Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
4a) Sử dụng bất đẳng thức AM-GM ta có :
\(\frac{x}{y}+\frac{y}{x}\ge2\sqrt{\frac{x}{y}\times\frac{y}{x}}=2\)
Đẳng thức xảy ra khi x = y > 0
Từ A vẽ AD _|_ BC ,AG là trung tuyến cắt BC tại E\(\Rightarrow\)\(\hept{\begin{cases}AD\le AE\Rightarrow\frac{1}{AD}\ge\frac{1}{AE}\\1.2GE=BC\left(do\Delta BGCvuongcoElatrungdiem\right)\end{cases}}\)
cotB=\(\frac{BD}{AD}\)cotC=\(\frac{CD}{AD}\)\(\Rightarrow\)2.cotB + cotC=\(\frac{BC}{AD}\)
3.G là trực tâm nên 3GE=AE\(\Rightarrow\)\(\frac{1}{AD}\ge\frac{1}{3GE}\)
từ 1, 2 và 3 \(\Rightarrow\)cotB + cotC=\(\frac{BC}{AD}\ge\frac{2GE}{3GE}=\frac{2}{3}\)
Bài 1. Từ giả thiết suy ra 1-a = b+c và áp dụng \(\left(x+y\right)^2\ge4xy\)
Ta có : \(4\left(1-a\right)\left(1-b\right)\left(1-c\right)=4\left(b+c\right)\left(1-c\right)\left(1-b\right)\le\left[\left(b+c\right)+\left(1-c\right)\right]^2\left(1-b\right)\)
\(=\left(b+1\right)^2\left(1-b\right)=\left(b+1\right)\left(1-b^2\right)=-b^2\left(b+1\right)+\left(b+1\right)\le b+1=a+2b+c\)
\(VT=\frac{a^3}{a^2+b^2}+\frac{b^3}{b^2+c^2}+\frac{c^3}{c^2+a^2}\)
\(=a-\frac{ab^2}{a^2+b^2}+b-\frac{bc^2}{b^2+c^2}+c-\frac{ca^2}{c^2+a^2}\)
Áp dụng bất đẳng thức Cauchy :
\(VT\ge a-\frac{ab^2}{2ab}+b-\frac{bc^2}{2bc}+c-\frac{ca^2}{2ca}\)
\(=\left(a+b+c\right)-\left(\frac{a}{2}+\frac{b}{2}+\frac{c}{2}\right)\)
\(=\left(a+b+c\right)-\frac{a+b+c}{2}\)
\(=\frac{a+b+c}{2}\) ( đpcm )
Dấu "=" xảy ra \(\Leftrightarrow a=b=c\)
1/ Ta có:
\(\frac{a^3}{a^2+b^2}=\frac{a^3+ab^2-ab^2}{a^2+b^2}\\ =\frac{a\left(a^2+b^2\right)}{a^2+b^2}-\frac{ab^2}{a^2+b^2}=a-\frac{ab^2}{a^2+b^2}\ge a-\frac{ab^2}{2ab}=a-\frac{b}{2}\)
(Áp dụng btđ \(a^2+b^2\ge2ab\forall a,b\))
Tương tự ta có: \(\frac{b^3}{b^2+c^2}\ge b-\frac{c}{2};\frac{c^3}{c^2+a^2}\ge c-\frac{a}{2}\)
Cộng 3 vế lại, ta được
\(\frac{a^3}{a^2+b^2}+\frac{b^3}{b^2+c^2}+\frac{c^3}{c^2+a^2}\ge a-\frac{b}{2}+b-\frac{c}{2}+c-\frac{a}{2}\\ =\frac{2a-b+2b-c+2c-a}{2}=\frac{a+b+c}{2}\left(đpcm\right)\)
Dấu ''=" xảy ra khi a=b=c