Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1.\)
Theo đề ra, ta có:
\(ax+by=c\)
\(bx+cy=a\Leftrightarrow ax+by+bx+cy+cx+ay=c+a+b\)
\(cx+by=b\)
\(\Leftrightarrow x\left(a+b+c\right)+y\left(a+b+c\right)=a+b+c\)
\(\Leftrightarrow\left(x+y-1\right)\left(a+b+c\right)=0\)
Ta có: \(x,y\)thỏa mãn \(\Rightarrow a+b+c=0\Rightarrow a+b=\left(-c\right)\)
Khi đó ta có:
\(a^3+b^3+c^3=a^3+3ab\left(a+b\right)+b^3-3ab\left(a+b\right)+c^3\)
\(\Leftrightarrow\left(a+b\right)^3-3ab\left(a+b\right)+c^3=\left(-c\right)^3-3ab\left(-c\right)+c^3=3abc\)\(\left(đpcm\right)\)
Ta có \(\dfrac{a}{x}+\dfrac{b}{y}+\dfrac{c}{z}=0\Leftrightarrow ayz+bzx+cxy=0\).
Do đó: \(ax^2+by^2+cz^2=\left(ax+by+cz\right)\left(x+y+z\right)-axy-axz-byz-byx-czx-czy=0-xy\left(a+b\right)-yz\left(b+c\right)-zx\left(c+a\right)=0+xyc+yza+zxb=0\).
a/ Biến đổi tương đương:
\(\Leftrightarrow a^2c+ab^2+bc^2\ge b^2c+ac^2+a^2b\)
\(\Leftrightarrow a^2c-a^2b+ab^2-ac^2+bc^2-b^2c\ge0\)
\(\Leftrightarrow a^2\left(c-b\right)-\left(ab+ac\right)\left(c-b\right)+bc\left(c-b\right)\ge0\)
\(\Leftrightarrow\left(c-b\right)\left(a^2+bc-ab-ac\right)\ge0\)
\(\Leftrightarrow\left(c-b\right)\left(a\left(a-b\right)-c\left(a-b\right)\right)\ge0\)
\(\Leftrightarrow\left(c-b\right)\left(a-c\right)\left(a-b\right)\ge0\)
\(\Leftrightarrow\left(c-b\right)\left(c-a\right)\left(b-a\right)\ge0\) luôn đúng do \(a\le b\le c\)
Vậy BĐT ban đầu đúng
Câu 2: Đề sai, cho \(a=b=c=1\Rightarrow3\ge6\) (sai)
Đề đúng phải là \(\frac{a}{bc}+\frac{b}{ac}+\frac{c}{ab}\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
\(VT=\frac{a^2}{abc}+\frac{b^2}{abc}+\frac{c^2}{abc}=\frac{a^2+b^2+c^2}{abc}\ge\frac{ab+ac+bc}{abc}=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
Câu 3: Không phải với mọi x; y với mọi \(x;y\) dương
Biến đổi tương đương do mẫu số vế phải dương nên ta được quyền nhân chéo:
\(\Leftrightarrow3x^3\ge\left(2x-y\right)\left(x^2+xy+y^2\right)\)
\(\Leftrightarrow3x^3\ge2x^3+x^2y+xy^2-y^3\)
\(\Leftrightarrow x^3+y^3-x^2y-xy^2\ge0\)
\(\Leftrightarrow x^2\left(x-y\right)-y^2\left(x-y\right)\ge0\)
\(\Leftrightarrow\left(x-y\right)\left(x^2-y^2\right)\ge0\)
\(\Leftrightarrow\left(x-y\right)^2\left(x+y\right)\ge0\) (luôn đúng)
a) https://hoc24.vn/hoi-dap/question/398481.html
b)
a2 + b2 + c2 = ab + ac + bc
<=> 2a2 + 2b2 + 2c2 = 2ac + 2ab + 2bc
<=> (a2 - 2ac + c2) + (a2 - 2ab + b2) + (b2 - 2bc + c2) = 0
<=> (a - b)2 + (a - c)2 + (b - c)2 = 0
<=> a = b = c
1. Ta có:
\(\left(a^2+b^2\right)\left(x^2+y^2\right)=\left(ax+by\right)^2\)
=> \(a^2x^2+a^2y^2+b^2x^2+b^2y^2=a^2x^2+2axby+b^2y^2\)
=> \(a^2y^2+b^2x^2=2axby\)
=> \(a^2y^2+b^2x^2-2axby=0\)
=> \(a^2y^2+b^2x^2-2aybx=0\)
=> \(\left(ay-bx\right)^2=0\)
Mà \(\left(ay-bx\right)^2\ge0\)
Dấu '' = '' xảy ra \(\Leftrightarrow\) \(ay-bx=0\)
\(\Leftrightarrow\) \(ay=bx\)
\(\Leftrightarrow\) \(\dfrac{a}{x}=\dfrac{b}{y}\)
2. Ta có:
\(a^2+b^2+c^2=ab+bc+ac\)
=> \(2a^2+2b^2+2c^2=2ab+2bc+2ac\)
=> \(2a^2+2b^2+2c^2-2ab-2bc-2ac=0\)
=> \(\left(a^2-2ab+b^2\right)+\left(a^2-2ac+c^2\right)+\left(b^2-2bc+c^2\right)=0\)
=> \(\left(a-b\right)^2+\left(a-c\right)^2+\left(b-c\right)^2=0\)
Ta thấy:
\(\left(a-b\right)^2\ge0\); \(\left(a-c\right)^2\ge0\); \(\left(b-c\right)^2\ge0\)
=> \(\left(a-b\right)^2+\left(a-c\right)^2+\left(b-c\right)^2\ge0\)
Mà \(\left(a-b\right)^2+\left(a-c\right)^2+\left(b-c\right)^2=0\)
Dấu '' = '' xảy ra \(\Leftrightarrow\) \(\left\{{}\begin{matrix}a-b=0\\a-c=0\\b-c=0\end{matrix}\right.\)
\(\Leftrightarrow\)\(\left\{{}\begin{matrix}a=b\\a=c\\b=c\end{matrix}\right.\)
\(\Leftrightarrow\) a = b = c