K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
13 tháng 7

1. Bạn xem lại, hạng tử cuối là $2^{2010}$ hay $2^{2011}$

AH
Akai Haruma
Giáo viên
13 tháng 7

2.

Vì $x\vdots 4$ nên $x=4k$ với $k$ nguyên.

Ta có: $2010< x< 2025$
$\Rightarrow 2010< 4k< 2025$

$\Rightarrow 502,5< k< 506,25$

$\Rightarrow k\in \left\{503; 504; 505; 506\right\}$

$\Rightarrow x\in \left\{2012; 2016; 2020; 2024\right\}$

24 tháng 8 2018

Ta có: A =  1   +   2   +   2 2   +   . . .   +   2 2009   +   2 2010

= 1 + 2 ( 1 + 2 +  2 2 ) + ... + 2 2008  ( 1 + 2 +  2 2  )

= 1 + 2 ( 1 + 2 + 4 ) + ... + 22008 ( 1 + 2 + 4 )

= 1 + 2 . 7 + ... +  2 2008  . 7 = 1 + 7 ( 2 + ... +  2 2008  )

Mà 7 ( 2 + ... +  2 2008 ) ⋮ 7. Do đó: A chia cho 7 dư 1.

5 tháng 2 2018

Ta có: A = 1 + 2 + 2 2  + 2 3 + ... + 2 2008  + 2 2009  + 2 2010

 

= 1 + 2 ( 1 + 2 + 22 ) + ... +  2 2008  ( 1 + 2 + 22 )

= 1 + 2 ( 1 + 2 + 4 ) + ... +  2 2008 ( 1 + 2 + 4 )

= 1 + 2 . 7 + ... + 2 2008 . 7 = 1 + 7 ( 2 + ... +  2 2008  )

Mà 7 ( 2 + ... +  2 2008 ) ⋮ 7. Do đó: A chia cho 7 dư 1.

12 tháng 12 2021

Bài 1:

\(a,A=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{2009}+2^{2010}\right)\\ A=\left(1+2\right)\left(2+2^3+...+2^{2009}\right)=3\left(2+...+2^{2009}\right)⋮3\\ A=\left(2+2^2+2^3\right)+...+\left(2^{2008}+2^{2009}+2^{2010}\right)\\ A=\left(1+2+2^2\right)\left(2+...+2^{2008}\right)=7\left(2+...+2^{2008}\right)⋮7\)

\(b,\left(\text{sửa lại đề}\right)B=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{2009}+3^{2010}\right)\\ B=\left(1+3\right)\left(3+3^3+...+3^{2009}\right)=4\left(3+3^3+...+3^{2009}\right)⋮4\\ B=\left(3+3^2+3^3\right)+...+\left(3^{2008}+3^{2009}+3^{2010}\right)\\ B=\left(1+3+3^2\right)\left(3+...+3^{2008}\right)=13\left(3+...+3^{2008}\right)⋮13\)

12 tháng 12 2021

Bài 2:

\(a,\Rightarrow2A=2+2^2+...+2^{2012}\\ \Rightarrow2A-A=2+2^2+...+2^{2012}-1-2-2^2-...-2^{2011}\\ \Rightarrow A=2^{2012}-1>2^{2011}-1=B\\ b,A=\left(2020-1\right)\left(2020+1\right)=2020^2-2020+2020-1=2020^2-1< B\)

19 tháng 3 2021

Ta có : 

\(A=2+2^2+2^3+2^4...2^{2010}\)\(^0\)

\(=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{2009}\left(1+2\right)\)

\(=2.3+2^3.3+....+2^{2009}.3\)

\(=3\left(2+2^3+....+2^{2009}\right)⋮3\)

Ta có :

\(2+2^2+2^3+2^4+....+2^{2010}\)

\(=2\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+...+2^{2008}\left(1+2+2^2\right)\)

\(=2.7+2^4.7+....+2^{2008}.7\)

\(=7\left(2+2^4+....+2^{2008}\right)⋮7\)

Vậy \(2^1+2^2+2^3+2^4+...+2^{2010}⋮3\) và \(7\)

29 tháng 12 2022

TK :

A=(2+22)+(23+24)+...+(22009+22010)

A=(1+2)(2+23+...+22009)=3(2+...+22009)⋮3

A=(2+22+23)+...+(22008+22009+22010 )

A=(1+2+22)(2+...+22008)=7(2+...+22008)⋮7

29 tháng 12 2022

Em xem lại đề nhé vì A như thế không chia hết cho 3 và cho 7

5 tháng 11 2020

Giải:

a)    A = 21 + 22 + 23 + 24 + .............. + 22010

Ta có :

Trong 1 tích chỉ cần có 1 số chia hết cho n thì tích đó chia hết cho n mà 21 \(⋮\)cả 3 và 7

=>  A \(⋮\)cả 3 và 7

Vây  A \(⋮\)cả 3 và 7

b) B = 31 + 32 + 33 + 34 + ............... + 22010

Ta có :

Trong 1 tích chỉ cần có 1 số chia hết cho n thì tích đó chia hết cho n 

mà 32 \(⋮\)4

Vì dãy số trên là các số tự nhiên có khoảng cách là 1 nên 39 nằm trong dãy số đó mà 39 \(⋮\)13

=> B \(⋮\)cả 4 và 13

Vậy  B \(⋮\)cả 4 và 13

c)  C = 51 + 52 + 53 + 54 + ................... + 52010

Ta có : 

Trong 1 tích chỉ cần có 1 số chia hết cho n thì tích đó chia hết cho n

mà 54 \(⋮\)6

Vì dãy số trên là các số tự nhiên có khoảng cách là 1 nên 62 nằm trong dãy số đó mà 62 \(⋮\)31 

=> C \(⋮\)cả 6 và 31

Vậy C \(⋮\)cả 6 và 31

d)  D = 71 + 72 + 73 + 74 + ...................... + 72010

Ta có :

Trong 1 tích chỉ cần có 1 số chia hết cho n thì tích đó chia hết cho n

mà 72 \(⋮\)8

Vì dãy số trên là các số tự nhiên có khoảng cách là 1 nên 114 nằm trong dãy số đó mà 114 \(⋮\)57

=> D \(⋮\)cả 8 và 57

Vậy  D \(⋮\)cả 8 và 57

Học tốt!!!

19 tháng 12 2016

1) \(\left|x+1\right|+3=8\\ \Rightarrow\left|x+1\right|=5\\ \Rightarrow x+1=5h\text{oặ}c=-5\\ \Rightarrow x=4;-6\)

2) \(n+6⋮n+2\\ \Rightarrow\left(n+2\right)+4⋮n+2\\ \Rightarrow4⋮n+2\\ \Rightarrow n+2\in\text{Ư}\left(4\right)=\left\{1;2;4\right\}\\ \Rightarrow n\in\left\{0;2\right\}\)

b) \(5n+27⋮4\\ \Rightarrow4n+n+27⋮4\\ \Rightarrow n+27⋮4\)

n+27 chia hết cho 4 khi n chia 4 dư 3

=> n=4k+3 ( k thuộc N)

3) Gọi thương của phép chia là : k

=> a=72k+69

a chia cho 18 dư 15

=> thường là 15

=> a=18.15+15=285

 

19 tháng 12 2016

vì sao lại có a chia 18 dư 15

 

\(A=2\left(1+2+2^2\right)+...+2^{2008}\left(1+2+2^2\right)\)

\(=7\left(2+...+2^{2008}\right)⋮7\)

2 tháng 1 2022

đây nha ^^ 

8 tháng 9 2018

a) X = {2012 ; 2016 ; 2020 ; 2024}

b)Đề kiểm tra Toán 6 | Đề thi Toán 6

y + 3 ⋮ 3 => y ⋮ 3

Mà: y ∈ {0 ; 1 ; 2 ; 3 ; 4 ; 5 ; 6} và y ≠ 0 nên y ∈ {3 ; 6}.

Vậy số cần tìm là 312 ; 612.

Đề kiểm tra Toán 6 | Đề thi Toán 6

Vậy số cần tìm là 120 ; 126.