Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có b là TBC của a và c => a + c = 2b
+) 1:c = 1:2(1:b + 2:d) => 1:c = (d+2b):(2bd)
=> 2bd = c(d+2b)
Thay 2b = a + c, ta có :
(a + c)d = c(d + a + c) => ad + cd = cd + ac + \(c^2\)
=> ad = ac + \(c^2\) => ad = c(a+c) => ad = cb => a:b = c:d
Ta có b là TBC của a và c =>2b=a+c
+) 1 :c = 1:2(1:b+2:d)=>1:c=>(d+2b):(2bd)
=>2bd=c(d+2b)
Thay 2b = a + c, ta có :
(a + c)d = c(d + a + c) => ad + cd = cd + ac +c^2
=>ad=ac+c^2=>ad=c(a+c)=>ad=cb=>a:b=c:d(đpcm)
+) b là trung bình cộng của a và c => a + c = 2b
+) \(\frac{1}{c}=\frac{1}{2}\left(\frac{1}{b}+\frac{2}{d}\right)\) => \(\frac{1}{c}=\frac{d+2b}{2bd}\) => 2bd = c(d + 2b) . Thay 2b = a + c ta có:
(a + c)d = c.(d + a + c) => ad + cd = cd + ac + c2 => ad = ac + c2 => ad = c.(a + c) => ad = cb => \(\frac{a}{b}=\frac{c}{d}\) (điều phải chứng minh)