Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(VT=\frac{2\cos2\alpha.\cos\alpha}{2.\sin2\alpha\cos\alpha}.\frac{\sin2\alpha}{\cos2\alpha}-2\left(2\sin\alpha.\cos\alpha\right)^2\)
\(VT=1-2\left(\sin2\alpha\right)^2=\cos4\alpha\)
\(\frac{1-cosa+cos2a}{sin2a-sina}=\frac{1-cosa+2cos^2a-1}{2sina.cosa-sina}=\frac{cosa\left(2cosa-1\right)}{sina\left(2cosa-1\right)}=\frac{cosa}{sina}=cota\)
vậy thì kết quả là
\(\sin2\alpha=-0.96\)
\(\)còn \(\cos\left(\alpha+\frac{\pi}{6}\right)\) thì đúng vì -(-0.8) mà sorry thiếu ngủ hôm qua -_-
Bài 4:
$\sin a=\frac{1}{2}$ và $0< a< \pi$ nên $a=\frac{\pi}{6}$ hoặc $a=\frac{5}{6}\pi$
Nếu $a=\frac{\pi}{6}$ thì $\tan (2a-\frac{\pi}{2})+\sin a=\tan (2.\frac{\pi}{6}-\frac{\pi}{2})+\frac{1}{2}=\frac{-\sqrt{3}}{3}+\frac{1}{2}=\frac{3-2\sqrt{3}}{6}$
Nếu $a=\frac{5\pi}{6}$ thì:
\(\tan (2a-\frac{\pi}{2})+\sin a=\tan (2.\frac{5\pi}{6}-\frac{\pi}{2})+\frac{1}{2}=\frac{\sqrt{3}}{3}+\frac{1}{2}=\frac{3+2\sqrt{3}}{6}\)
Bài 3:
\(\tan a=\frac{-4}{7}=\frac{\sin a}{\cos a}\)
\(\Rightarrow \frac{\sin ^2a}{\cos ^2a}=\frac{16}{49}\Rightarrow \frac{1}{\cos ^2a}=\frac{65}{49}\) \(\Rightarrow \cos ^2a=\frac{49}{65}\)
Kết hợp điều kiện của $a$ suy ra $\cos a>0\Rightarrow \cos a=\frac{7}{\sqrt{65}}$
$\Rightarrow \sin a=\frac{-4}{7}\cos a=\frac{-4}{\sqrt{65}}$
Do đó:
\(\cos (2a-\frac{\pi}{2})=\cos 2a.\cos \frac{\pi}{2}+\sin 2a.\sin \frac{\pi}{2}\)
\(=(\cos ^2a-\sin ^2a).0+2\sin a\cos a.1=2\sin a\cos a=2.\frac{-4}{\sqrt{65}}.\frac{7}{\sqrt{65}}=\frac{56}{65}\)
Câu 1:
\(\frac{\pi}{2}< a< \pi\Rightarrow\left\{{}\begin{matrix}sina>0\\cosa< 0\end{matrix}\right.\)
Ta có: \(\frac{1}{cos^2a}=1+tan^2a\Rightarrow cos^2a=\frac{1}{1+tan^2a}\Rightarrow cosa=\frac{-1}{\sqrt{1+tan^2a}}=-\frac{3}{5}\)
\(\Rightarrow sina=cosa.tana=\frac{4}{5}\)
\(\Rightarrow P=\frac{\frac{16}{25}+\frac{3}{5}}{\frac{4}{5}-\frac{9}{25}}=\frac{31}{11}\)
Câu 2:
\(P=sin^4a-cos^4a=\left(sin^2a+cos^2a\right)\left(sin^2a-cos^2a\right)=sin^2a-cos^2a\)
\(P=1-cos^2a-cos^2a=1-2cos^2a\)
Theo cmt ta có \(cos^2a=\frac{1}{1+tan^2a}\Rightarrow P=1-\frac{2}{1+tan^2a}=\frac{12}{13}\)
a, \(sin\alpha=\frac{1}{5},\frac{\pi}{2}< \alpha< \pi\)
+) \(sin^2\alpha+cos^2\alpha=1\)
\(\Leftrightarrow\left(\frac{1}{5}\right)^2+cos^2\alpha=1\Leftrightarrow cos^2\alpha=\frac{24}{25}\Leftrightarrow cos\alpha=\pm\frac{2\sqrt{6}}{5}\)
mà \(\frac{\pi}{2}< \alpha< \pi\Rightarrow cos\alpha=-\frac{2\sqrt{6}}{5}\)
+) \(tan\alpha=\frac{sin\alpha}{cos\alpha}=\frac{\frac{1}{5}}{-\frac{2\sqrt{6}}{5}}=-\frac{\sqrt{6}}{12}\)
+) \(cot\alpha=\frac{cos\alpha}{sin\alpha}=\frac{-\frac{2\sqrt{6}}{5}}{\frac{1}{5}}=-2\sqrt{6}\)
a/ \(\frac{\pi}{2}< a< \pi\Rightarrow cosa< 0\)
\(\Rightarrow cosa=-\sqrt{1-sin^2a}=-\frac{2\sqrt{6}}{5}\)
\(tanx=\frac{sinx}{cosx}=-\frac{\sqrt{6}}{12}\) ; \(cotx=\frac{1}{tanx}=-2\sqrt{6}\)
b/ \(\frac{3\pi}{2}< a< 2\pi\Rightarrow cosa>0\)
\(\Rightarrow cosa=\frac{1}{\sqrt{1+tan^2a}}=\frac{5\sqrt{26}}{26}\)
\(sina=tana.cosa=-\frac{\sqrt{26}}{26}\)
c/ \(0< a< \frac{\pi}{2}\Rightarrow sina;cosa>0\)
\(\left\{{}\begin{matrix}cos^2a+sin^2a=1\\2sina.cosa=\frac{2}{3}\end{matrix}\right.\)
\(\Rightarrow sina+cosa=\frac{\sqrt{15}}{3}\Rightarrow cosa=\frac{\sqrt{15}}{3}-sina\)
\(\Rightarrow sina\left(\frac{\sqrt{15}}{3}-sina\right)=\frac{1}{3}\Rightarrow sin^2a-\frac{\sqrt{15}}{3}sina+\frac{1}{3}=0\)
\(\Rightarrow\left[{}\begin{matrix}sina=\frac{\sqrt{15}+\sqrt{3}}{6}\Rightarrow cosa=\frac{\sqrt{15}-\sqrt{3}}{6}\\sina=\frac{\sqrt{15}-\sqrt{3}}{6}\Rightarrow cosa=\frac{\sqrt{15}+\sqrt{3}}{6}\end{matrix}\right.\) \(\Rightarrow tana=\frac{sina}{cosa}=...\)
d/ \(\frac{\pi}{2}< a< \pi\Rightarrow\left\{{}\begin{matrix}sina>0\\cosa< 0\end{matrix}\right.\)
\(cosa=\sqrt{2}-sina\) \(\Rightarrow sin^2a+\left(\sqrt{2}-sina\right)^2=1\)
\(\Leftrightarrow2sin^2a-2\sqrt{2}sina+1=0\Rightarrow sina=\frac{\sqrt{2}}{2}\)
\(\Rightarrow cosa=-\sqrt{1-sin^2a}=-\frac{\sqrt{2}}{2}\)
\(tana=\frac{sina}{cosa}=-1\)
Theo mk là A đúng
ta có : cos2x = \(\frac{1+cos2x}{2}\)
=> cos2(\(\frac{\pi}{4}\)+\(\frac{\alpha}{2}\))= \(\frac{1+cos\left(\frac{\pi}{2}+\alpha\right)}{2}\) = \(\frac{1-sinx}{2}\)
\(\frac{1+sin^2a}{1-sin^2a}=\frac{1+sin^2a}{cos^2a}=\frac{1}{cos^2a}+\frac{sin^2a}{cos^2a}=1+tan^2a+tan^2a=1+2tan^2a\)
\(\frac{cosa}{1+sina}+tana=\frac{cosa}{1+sina}+\frac{sina}{cosa}=\frac{cos^2a+sina+sin^2a}{cosa\left(1+sina\right)}=\frac{1+sina}{cosa\left(1+sina\right)}=\frac{1}{cosa}\)
\(\frac{sina}{1+cosa}+\frac{1+cosa}{sina}=\frac{sin^2a+cos^2a+2cosa+1}{\left(1+cosa\right)sina}=\frac{2+2cosa}{\left(1+cosa\right)sina}=\frac{2\left(1+cosa\right)}{\left(1+cosa\right)sina}=\frac{2}{sina}\)
\(\frac{sin^2a-cos^2a}{1+2sina.cosa}=\frac{\left(sina-cosa\right)\left(sina+cosa\right)}{sin^2a+cos^2a+2sina.cosa}=\frac{\left(sina-cosa\right)\left(sina+cosa\right)}{\left(sina+cosa\right)^2}\)
\(=\frac{sina-cosa}{sina+cosa}=\frac{\frac{sina}{cosa}-\frac{cosa}{cosa}}{\frac{sina}{cosa}+\frac{cosa}{cosa}}=\frac{tana-1}{tana+1}\)