Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Khó
a) d1 \(\ne\)d2\(\ne\)d3(1)
Giao d1 và d2 là : \(\int^{x+3y=1}_{2x-y=-5}\Leftrightarrow\int^{x=-2}_{y=1}\)(2)
Giao d1 và d3 là : \(\int^{x+3y=1}_{-3x+2y=8}\Leftrightarrow\int^{x=-2}_{y=1}\)(3)
(1)(2)(3) => dpcm
b) tương tự
hehehehehe mình cũng làm dc hahahahah
a.
\(\left\{{}\begin{matrix}\left(x-1\right)^2-\left(y+1\right)^2=0\\x+3y-5=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-1-y-1\right)\left(x-1+y+1\right)=0\\x+3y-5=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-y-2\right)\left(x+y\right)=0\\x+3y-5=0\end{matrix}\right.\)
TH1: \(\left\{{}\begin{matrix}x-y-2=0\\x+3y-5=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{11}{4}\\y=\dfrac{3}{4}\end{matrix}\right.\)
TH2: \(\left\{{}\begin{matrix}x+y=0\\x+3y-5=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{5}{2}\\y=\dfrac{5}{2}\end{matrix}\right.\)
b.
\(\left\{{}\begin{matrix}xy-2x-y+2=0\\3x+y=8\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\left(y-2\right)-\left(y-2\right)=0\\3x+y=8\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-1\right)\left(y-2\right)=0\\3x+y=8\end{matrix}\right.\)
TH1:
\(\left\{{}\begin{matrix}x-1=0\\3x+y=8\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=5\end{matrix}\right.\)
TH2:
\(\left\{{}\begin{matrix}y-2=0\\3x+y=8\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=2\end{matrix}\right.\)
a: \(1.5\sqrt{5}=\sqrt{1.5^2\cdot5}=\sqrt{\dfrac{45}{4}}\)
b: \(-ab^2\cdot\sqrt{5a}=-\sqrt{a^2b^4\cdot5a}=-\sqrt{5a^3b^4}\)
d: \(\dfrac{1}{3}y\sqrt{\dfrac{27}{y^2}}=-\sqrt{\dfrac{1}{9}y^2\cdot\dfrac{27}{y^2}}=-\sqrt{3}\)
c: \(\dfrac{1}{y}\sqrt{19y}=-\sqrt{\dfrac{1}{y^2}\cdot19y}=-\sqrt{\dfrac{19}{y}}\)
a) \(\left\{{}\begin{matrix}2x+3y=5\\4x-5y=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}4x+6y=10\\4x-5y=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x+3y=5\\11y=9\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x+3\cdot\dfrac{9}{11}=5\\y=\dfrac{9}{11}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x+\dfrac{27}{11}=5\\y=\dfrac{9}{11}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x=\dfrac{28}{11}\\y=\dfrac{9}{11}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{14}{11}\\y=\dfrac{9}{11}\end{matrix}\right.\)
Vậy: \(x=\dfrac{14}{11};y=\dfrac{9}{11}\)
Ai phát hiện sai đề thì sửa và làm giúp mk hộ với, cảm ơn :) (chỉ cần làm tóm tắt thôi)
a,Ta có hệ phương trình\(\left\{{}\begin{matrix}7x-2y=1\left(1\right)\\2x+3y=11\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}21x-6y=3\\4x+6y=22\end{matrix}\right.\)
=> \(21x-6y+4x+6y=25\)
=> \(25x=25\)
=> \(x=1\)
- Thay x = 1 vào phương trình 1 ta được :
\(7-2y=1\)
=> \(y=3\)
Vậy hệ phương trình có duy nhất 1 nghiệm là ( x, y ) = ( 1, 3 )
b, Ta có hệ phương trình\(\left\{{}\begin{matrix}3x+2y=16\\2x-y=-1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}3x+2y=16\\y=2x+1\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}3x+2\left(2x+1\right)=16\\y=2x+1\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}3x+4x+2=16\\y=2x+1\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}x=2\\y=2x+1\end{matrix}\right.\)=> \(\left\{{}\begin{matrix}x=2\\y=2.2+1=5\end{matrix}\right.\)
Vậy hệ phương trình có duy nhất 1 nghiệm là ( x, y ) = ( 2, 5 )
c, Ta có hệ phương trình \(\left\{{}\begin{matrix}x+2y=5\\3x-2y=-1\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}x=5-2y\\3x-2y=-1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=5-2y\\3\left(5-2y\right)-2y=-1\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}x=5-2y\\15-6y-2y=-1\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}x=5-2y\\y=2\end{matrix}\right.\)=> \(\left\{{}\begin{matrix}x=5-2.2=1\\y=2\end{matrix}\right.\)
Vậy hệ phương trình có duy nhất 1 nghiệm là ( x, y ) = ( 1, 2 )
ở cuối câu 1 thiếu ^2 nha. 2y thành 2y^2