K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Câu 3: Giải các phương trình sau bằng cách đưa về dạng ax+b=0 1. a, \(\frac{5x-2}{3}=\frac{5-3x}{2}\); b, \(\frac{10x+3}{12}=1+\frac{6+8x}{9}\) c, \(2\left(x+\frac{3}{5}\right)=5-\left(\frac{13}{5}+x\right)\); d, \(\frac{7}{8}x-5\left(x-9\right)=\frac{20x+1,5}{6}\) e, \(\frac{7x-1}{6}+2x=\frac{16-x}{5}\); f, 4 (0,5-1,5x)=\(\frac{5x-6}{3}\) g, \(\frac{3x+2}{2}-\frac{3x+1}{6}=\frac{5}{3}+2x\); h, \(\frac{x+4}{5}.x+4=\frac{x}{3}-\frac{x-2}{2}\) i,...
Đọc tiếp

Câu 3: Giải các phương trình sau bằng cách đưa về dạng ax+b=0

1. a, \(\frac{5x-2}{3}=\frac{5-3x}{2}\); b, \(\frac{10x+3}{12}=1+\frac{6+8x}{9}\)

c, \(2\left(x+\frac{3}{5}\right)=5-\left(\frac{13}{5}+x\right)\); d, \(\frac{7}{8}x-5\left(x-9\right)=\frac{20x+1,5}{6}\)

e, \(\frac{7x-1}{6}+2x=\frac{16-x}{5}\); f, 4 (0,5-1,5x)=\(\frac{5x-6}{3}\)

g, \(\frac{3x+2}{2}-\frac{3x+1}{6}=\frac{5}{3}+2x\); h, \(\frac{x+4}{5}.x+4=\frac{x}{3}-\frac{x-2}{2}\)

i, \(\frac{4x+3}{5}-\frac{6x-2}{7}=\frac{5x+4}{3}+3\); k, \(\frac{5x+2}{6}-\frac{8x-1}{3}=\frac{4x+2}{5}-5\)

m, \(\frac{2x-1}{5}-\frac{x-2}{3}=\frac{x+7}{15}\); n, \(\frac{1}{4}\left(x+3\right)=3-\frac{1}{2}\left(x+1\right).\frac{1}{3}\left(x+2\right)\)

p, \(\frac{x}{3}-\frac{2x+1}{6}=\frac{x}{6}-x\); q, \(\frac{2+x}{5}-0,5x=\frac{1-2x}{4}+0,25\)

r, \(\frac{3x-11}{11}-\frac{x}{3}=\frac{3x-5}{7}-\frac{5x-3}{9}\); s, \(\frac{9x-0,7}{4}-\frac{5x-1,5}{7}=\frac{7x-1,1}{6}-\frac{5\left(0,4-2x\right)}{6}\)

t, \(\frac{2x-8}{6}.\frac{3x+1}{4}=\frac{9x-2}{8}+\frac{3x-1}{12}\); u, \(\frac{x+5}{4}-\frac{2x-3}{3}=\frac{6x-1}{3}+\frac{2x-1}{12}\)

v, \(\frac{5x-1}{10}+\frac{2x+3}{6}=\frac{x-8}{15}-\frac{x}{30}\); w, \(\frac{2x-\frac{4-3x}{5}}{15}=\frac{7x\frac{x-3}{2}}{5}-x+1\)

17

Đây là những bài cơ bản mà bạn!

29 tháng 3 2020

bạn ấy muốn thách xem bạn nào đủ kiên nhẫn đánh hết chỗ này

29 tháng 4 2019

Vì số lượng bài khá nhiều và mình cũng không có quá nhiều thời gian nên không tránh khỏi sai sót, nếu phát hiện mong bạn thông cảm! Bài của tớ làm khá tắt bước, chỉ nên tham khảo. Bạn có thể tự biểu diễn tập nghiệm được không?

a. \(x+8>3x-1\)

\(\Leftrightarrow-2x>-9\)

\(\Leftrightarrow x< \frac{9}{2}\)

b. \(3x-\left(2x+5\right)\le\left(2x-3\right)\)

\(\Leftrightarrow3x-2x-5\le2x-3\)

\(\Leftrightarrow-x\le2\)

\(\Leftrightarrow x\ge2\)

c. \(\left(x-3\right)\left(x+3\right)< x\left(x+2\right)+3\)

\(\Leftrightarrow x^2-9< x^2+2x+3\)

\(\Leftrightarrow2x>-12\Leftrightarrow x>-6\)

d. \(2\left(3x-1\right)-2x< 2x+1\)

\(\Leftrightarrow6x-2-2x< 2x+1\)

\(\Leftrightarrow2x< 3\)

\(\Leftrightarrow x< \frac{3}{2}\)

e. \(\frac{3-2x}{5}>\frac{2-x}{3}\)

\(\Leftrightarrow3\left(3-2x\right)>5\left(2-x\right)\)

\(\Leftrightarrow9-6x>10-5x\)

\(\Leftrightarrow-x>1\) \(\Leftrightarrow x< -1\)

f. \(\frac{x-2}{6}-\frac{x-1}{3}\le\frac{x}{2}\)

\(\Leftrightarrow x-2-2\left(x-1\right)\le3x\)

\(\Leftrightarrow x-2-2x+2\le3x\)

\(\Leftrightarrow-4x\le0\Leftrightarrow x\ge0\)

g. \(\frac{x+1}{3}>\frac{2x-1}{6}\ge4\)

\(\Leftrightarrow2x+2>2x-1\ge24\)

\(\Leftrightarrow2x+2>2x\ge25\)

\(\Leftrightarrow x\ge\frac{25}{2}\)

h. \(1+\frac{2x+1}{3}>\frac{2x-1}{6}-2\)

\(\Leftrightarrow6+4x+2>2x-1-12\)

\(\Leftrightarrow2x>-25\)

\(\Leftrightarrow x>-\frac{25}{2}\)

i. \(\frac{x+5}{6}-\frac{2x+1}{3}\le\frac{x+3}{2}\)

\(\Leftrightarrow x+5-4x-2\le3x+9\)

\(\Leftrightarrow-6x\le6\)

\(\Leftrightarrow x\ge-1\)

j. \(\frac{5x+4}{6}-\frac{2x-1}{12}\ge4\)

\(\Leftrightarrow10x+8-2x+1\ge48\)

\(\Leftrightarrow8x\ge39\)

\(\Leftrightarrow x\ge\frac{39}{8}\)

30 tháng 4 2019

Bạn tự biểu diễn nghiệm trên trục số nhé!

a) \(x+8>3x-1\)

\(\Leftrightarrow x-3x>-8-1\)

\(\Leftrightarrow-2x>-9\)

\(\Leftrightarrow x< \frac{9}{2}\)

b) 3x − (2x+5) ≤ (2x−3)

\(\Leftrightarrow3x-2x-5\le2x-3\)

\(\Leftrightarrow3x-2x+2x\le5-3\)

\(\Leftrightarrow3x\le2\)

\(\Leftrightarrow x\le\frac{2}{3}\)

c) (x − 3) (x + 3) < x (x + 2) + 3

\(\Leftrightarrow x^2-9< x^2+2x+3\)

\(\Leftrightarrow x^2-x^2+2x< 9+3\)

\(\Leftrightarrow2x< 12\)

\(\Leftrightarrow x< 6\)

d) 2 (3x − 1) − 2x < 2x + 1

\(\Leftrightarrow6x-2-2x< 2x+1\)

\(\Leftrightarrow6x-2x+2x< 2+1\)

\(\Leftrightarrow6x< 3\)

\(\Leftrightarrow x< \frac{3}{6}\)

e) \(\frac{3-2x}{5}>\frac{2-x}{3}\)

\(\Leftrightarrow\frac{\left(3-2x\right)\times3}{15}>\frac{\left(2-x\right)\times5}{15}\)

\(\Leftrightarrow9-6x>10-5x\)

\(\Leftrightarrow-6x+5x>-9+10\)

\(\Leftrightarrow-x>1\)

\(\Leftrightarrow x< -1\)

f)\(\frac{x-2}{6}-\frac{x-1}{3}\le\frac{x}{2}\)

\(\Leftrightarrow x-2-2\left(x-1\right)\le3x\)

\(\Leftrightarrow x-2-2x+2\le3x\)

\(\Leftrightarrow-4x\le0\)

\(\Leftrightarrow x\ge0\)

g) \(\frac{x+1}{3}>\frac{2x-1}{6}\ge4\)

\(\Leftrightarrow\frac{\left(x+1\right)\cdot2}{6}>\frac{2x-1}{6}\ge\frac{4\cdot6}{6}\)

\(\Leftrightarrow2x+2>2x+1\ge24\)

\(\Leftrightarrow2x+2>2x\ge25\)

\(\Leftrightarrow x\ge\frac{25}{2}\)

h)\(1+\frac{2x+1}{3}>\frac{2x-1}{6}-2\)

\(\Leftrightarrow\frac{1}{6}+\frac{\left(2x+1\right)\cdot2}{6}>\frac{2x-1}{6}-\frac{2\cdot6}{6}\)

\(\Leftrightarrow6+4x+2>2x-1-12\)

\(\Leftrightarrow2x>-21\)

\(\Leftrightarrow x>\frac{-21}{2}\)

i)\(\frac{x+5}{6}-\frac{2x+1}{3}\le\frac{x+3}{2}\)

\(\Leftrightarrow\frac{x+5}{6}-\frac{\left(2x+1\right)\cdot2}{6}\le\frac{\left(x+3\right)\cdot3}{6}\)

\(\Leftrightarrow x+5-4x+2\le3x+9\)

\(\Leftrightarrow-3x-x+4x\le9-5-2\)

\(\Leftrightarrow x\le2\)

j) \(\frac{5x+4}{6}-\frac{2x-1}{12}\ge4\)

\(\Leftrightarrow\frac{\left(5x+4\right)\cdot2}{12}-\frac{2x-1}{12}\ge\frac{4\cdot12}{12}\)

\(\Leftrightarrow10x+8-2x-1\ge48\)

\(\Leftrightarrow10x-2x\ge48-8+1\)

\(\Leftrightarrow8x\ge41\)

\(\Leftrightarrow x\ge\frac{41}{8}\)

Mình không chắc là mình làm đúng đâu. Nhưng có sai sót gì thì cứ nói cho mình biết. Chúc bạn học tốt ^-^

2 tháng 7 2020

\(\frac{25x-655}{95}-\frac{5\left(x-12\right)}{209}=\frac{89-3x-\frac{2\left(x-18\right)}{5}}{11}\)

\(< =>\frac{5x-131}{19}=\frac{1631-52x-\frac{38x-684}{5}}{209}\)

\(< =>\left(5x-131\right)209=\left(1631-52x-\frac{38x-684}{5}\right)19\)

\(< =>55x-1441=1631-52x-\frac{38x-684}{5}\)

\(< =>3072-107x=\frac{38x-684}{5}\)

\(< =>\left(3072-107x\right)5=38x-684\)

\(< =>15360-535x-38x-684=0\)

\(< =>14676=573x< =>x=\frac{14676}{573}=\frac{4892}{191}\)

nghệm xấu thế 

2 tháng 7 2020

\(\frac{8\left(x+22\right)}{45}-\frac{7x+149+\frac{6\left(x+12\right)}{5}}{9}=\frac{x+35+\frac{2\left(x+50\right)}{9}}{5}\)

\(< =>\frac{8x+176}{45}-\frac{41x+817}{45}=\frac{11x+415}{45}\)

\(< =>993-33x-11x-415=0\)

\(< =>578=44x< =>x=\frac{289}{22}\)

26 tháng 3 2020

a)

\(\frac{x}{3}-\frac{5x}{6}-\frac{15x}{12}=\frac{x}{4}-5\)

\(\Leftrightarrow\frac{4x-10x-15x}{12}=\frac{3x-60}{12}\)

\(\Leftrightarrow\frac{-10x-11}{12}=\frac{3x-60}{12}\)

\(\Leftrightarrow\frac{-10x-11-3x+60}{12}=0\)

\(\Leftrightarrow\frac{49-13x}{12}=0\)

\(\Rightarrow49-13x=0\)

\(\Rightarrow x=\frac{-49}{13}\)

26 tháng 3 2020

b)

\(\frac{8x-3}{4}-\frac{3x-2}{2}=\frac{2x-1}{2}+\frac{x+3}{4}\)

\(\Leftrightarrow\frac{8x-3-6x+4}{4}=\frac{4x-2+x+3}{4}\)

\(\Leftrightarrow\frac{2x+1}{4}=\frac{5x+1}{4}\)

\(\Leftrightarrow\frac{2x+1-5x-1}{4}=0\)

\(\Leftrightarrow\frac{-3x}{4}=0\)

\(\Rightarrow-3x=0\)

\(\Rightarrow x=0\)

8 tháng 1 2020

1.

\(\frac{2x+3}{4}-\frac{5x+3}{6}=\frac{3-4x}{12}\)

\(MC:12\)

Quy đồng :

\(\Rightarrow\frac{3.\left(2x+3\right)}{12}-\left(\frac{2.\left(5x+3\right)}{12}\right)=\frac{3x-4}{12}\)

\(\frac{6x+9}{12}-\left(\frac{10x+6}{12}\right)=\frac{3x-4}{12}\)

\(\Leftrightarrow6x+9-\left(10x+6\right)=3x-4\)

\(\Leftrightarrow6x+9-3x=-4-9+16\)

\(\Leftrightarrow-7x=3\)

\(\Leftrightarrow x=\frac{-3}{7}\)

2.\(\frac{3.\left(2x+1\right)}{4}-1=\frac{15x-1}{10}\)

\(MC:20\)

Quy đồng :

\(\frac{15.\left(2x+1\right)}{20}-\frac{20}{20}=\frac{2.\left(15x-1\right)}{20}\)

\(\Leftrightarrow15\left(2x+1\right)-20=2\left(15x-1\right)\)

\(\Leftrightarrow30x+15-20=15x-2\)

\(\Leftrightarrow15x=3\)

\(\Leftrightarrow x=\frac{3}{15}=\frac{1}{5}\)

Dạng 1: Phương trình bậc nhất Bài 1: Giải các phương trình sau : a) 0,5x (2x - 9) = 1,5x (x - 5) b) 28 (x - 1) - 9 (x - 2) = 14x c) 8 (3x - 2) - 14x = 2 (4 - 7x) + 18x d) 2 (x - 5) - 6 (1 - 2x) = 3x + 2 e) \(\frac{x+7}{2}-\frac{x-3}{5}=\frac{x}{6}\) f) \(\frac{2x-3}{3}-\frac{5x+2}{12}=\frac{x-3}{4}+1\) g) \(\frac{x+6}{2}+\frac{2\left(x+17\right)}{2}+\frac{5\left(x-10\right)}{6}=2x+6\) h) \(\frac{3x+2}{5}-\frac{4x-3}{7}=4+\frac{x-2}{35}\) i)...
Đọc tiếp

Dạng 1: Phương trình bậc nhất

Bài 1: Giải các phương trình sau :

a) 0,5x (2x - 9) = 1,5x (x - 5)

b) 28 (x - 1) - 9 (x - 2) = 14x

c) 8 (3x - 2) - 14x = 2 (4 - 7x) + 18x

d) 2 (x - 5) - 6 (1 - 2x) = 3x + 2

e) \(\frac{x+7}{2}-\frac{x-3}{5}=\frac{x}{6}\)

f) \(\frac{2x-3}{3}-\frac{5x+2}{12}=\frac{x-3}{4}+1\)

g) \(\frac{x+6}{2}+\frac{2\left(x+17\right)}{2}+\frac{5\left(x-10\right)}{6}=2x+6\)

h) \(\frac{3x+2}{5}-\frac{4x-3}{7}=4+\frac{x-2}{35}\)

i) \(\frac{x-1}{2}+\frac{x+3}{3}=\frac{5x+3}{6}\)

j) \(\frac{x-3}{5}-1=\frac{4x+1}{4}\)

Dạng 2: Phương trình tích

Bài 2: Giải phương trình sau :

a) (x + 1) (5x + 3) = (3x - 8) (x - 1)

b) (x - 1) (2x - 1) = x(1 - x)

c) (2x - 3) (4 - x) (x - 3) = 0

d) (x + 1)2 - 4x2 = 0

e) (2x + 5)2 = (x + 3)2

f) (2x - 7) (x + 3) = x2 - 9

g) (3x + 4) (x - 4) = (x - 4)2

h) x2 - 6x + 8 = 0

i) x2 + 3x + 2 = 0

j) 2x2 - 5x + 3 = 0

k) x (2x - 7) - 4x + 14 = 9

l) (x - 2)2 - x + 2 = 0

Dạng 3: Phương trình chứa ẩn ở mẫu

Bài 3: Giải phương trình sau :

\(\frac{90}{x}-\frac{36}{x-6}=2\) \(\frac{3}{x+2}-\frac{2}{x-3}=\frac{8}{\left(x-3\right)\left(x+2\right)}\)
\(\frac{1}{x}+\frac{1}{x+10}=\frac{1}{12}\) \(\frac{1}{2x-3}-\frac{3}{x\left(2x-3\right)}=\frac{5}{x}\)
\(\frac{x+3}{x-3}-\frac{1}{x}=\frac{3}{x\left(x-3\right)}\) \(\frac{3}{4\left(x-5\right)}+\frac{15}{50-2x^2}=\frac{-7}{6\left(x+5\right)}\)
\(\frac{3}{x+2}-\frac{2}{x-2}+\frac{8}{x^2-4}=0\) \(\frac{x}{x+1}-\frac{2x-3}{1-x}=\frac{3x^2+5}{x^2-1}\)

0