Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Các đa thức sau khi được thu gọn và sáp xếp theo lũy giảm dần:
a) \(-x^4-4x^3+3x^2+6x-7\)
Bậc của đa thức: 4
Hệ số cao nhất : -1
Hệ số tự do : -7
b) \(-x^4-5x^3-5x^2+5\)
Bậc của đa thức: 4
Hệ số cao nhất : -1
Hệ số tự do: 5
c) \(7x^2+3x-1\)
Bậc của đa thức: 2
Hệ số cao nhất: 7
Hệ tự do: -1
d) \(3x^4+9x^3-3x^2+5x+4\)
Bậc của đa thức: 4
Hệ số cao nhất: 3
Hệ số tự do: 4
Noob ơi, bạn phải đưa vào máy tính ý solve cái là ra x luôn, chỉ tội là đợi hơi lâu
a, 4.(18 - 5x) - 12(3x - 7) = 15(2x - 16) - 6(x + 14)
=> 72 - 20x - 36x + 84 = 30x - 240 - 6x - 84
=> (72 + 84) + (-20x - 36x) = (30x - 6x) + (-240 - 84)
=> 156 - 56x = 24x - 324
=> 24x + 56x = 324 + 156
=> 80x = 480
=> x = 480 : 80 = 6
Vậy x = 6
\(\left(8x-3\right)\left(3x+2\right)-\left(4x+7\right)\left(x+4\right)=\left(2x+1\right)\left(5x-1\right)-33\)
\(\Rightarrow24x^2+16x-9x-6-\left(4x^2+16x+7x+28\right)=10x^2-2x+5x-1-33\)
\(\Rightarrow24x^2+16x-9x-6-4x^2-16x-7x-28=10x^2-2x+5x-1-33\)
\(\Rightarrow24x^2-4x^2-10x^2+16x-9x-16x-7x+2x-5x=6+28-1-33\)
\(\Rightarrow10x^2-19x=0\)
\(\Rightarrow x\left(10x-19\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\10x-19=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\10x=19\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{19}{10}\end{matrix}\right.\)
Vậy: \(x\in\left\{0;\dfrac{19}{10}\right\}\)
\(P\left(x\right)=8x^3\) + 5x -1
+ \(Q\left(x\right)\)= \(4x^2\) - 3x + 7
+ \(R\left(x\right)=8x^3+8x^2+7x\)
Tổng : 16x^3 + 12x^2 +9x + 6
1 - 8x7 - x2 + 5x4 - 2 + 3x5 + 8x7
= 3x5 + 5x4 - x2 - 1
1 - 8x7 - x2 + 5x4 - 2 + 3x5 + 8x7
= 3x5 + 5x4 - x2 - 1