K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1:

\(\Leftrightarrow4\cdot3^x\cdot\dfrac{1}{9}+2\cdot3^x\cdot3=4\cdot3^4+2\cdot3^7\)

\(\Leftrightarrow3^x\cdot\left(\dfrac{4}{9}+6\right)=3^4\cdot\left(4+2\cdot3^3\right)\)

\(\Leftrightarrow3^x=729\)

hay x=6

2: \(\Leftrightarrow3^x\cdot4\cdot\dfrac{1}{3}+3^x\cdot2\cdot9=4\cdot3^6+2\cdot3^9\)

\(\Leftrightarrow3^x\cdot\dfrac{58}{3}=42282\)

=>3x=2187

hay x=7

12 tháng 5 2017

đề gì mà ghở vậyoe

12 tháng 5 2017

lop 7 do

5 tháng 8 2019

A) \(2.3^{x+2}+4.3^{x+1}=10.3^6\)

=> \(2.3.3^{x+1}+4.3^{x+1}=10.3^6\)

=> \(6.3^{x+1}+4.3^{x+1}=10.3^6\)

=> \(\left(6+4\right).3^{x+1}=10.3^6\)

=> \(10.3^{x+1}=10.3^6\)

=> \(3^{x+1}=3^6\)

=> \(x+1=6\)

=> \(x=6-1\)

=> \(x=5\)

Vậy \(x=5.\)

B) \(6.8^{x-1}+8^{x+1}=6.8^{19}+8^{21}\)

=> \(6.8^{x-1}+8^{x-1}.8^2=6.8^{19}+8^{19}.8^2\)

=> \(8^{x-1}.\left(6+8^2\right)=8^{19}.\left(6+8^2\right)\)

=> \(8^{x-1}=8^{19}\)

=> \(x-1=19\)

=> \(x=19+1\)

=> \(x=20\)

Vậy \(x=20.\)

Còn câu c) thì mình đang nghĩ nhé.

Chúc bạn học tốt!

5 tháng 8 2019

Cảm Ơn bạn nhiều

2.3x+2+4.3x+1=10.36

=>2.3.3x+1+4.3x+1=10.36

=>(6+4).3x+1=10.36

=>10.3x+1=10.36

=>3x+1=36

=>x+1=6

=>x=5

4 tháng 10 2018

\(2.3^{x+2}+4.3^{x+1}=10.3\)

\(\Leftrightarrow2.3^{x+1}\left(3+2\right)=10.3\)

\(\Leftrightarrow3^{x+1}=3\)

\(\Leftrightarrow x+1=1\)

\(\Leftrightarrow x=0\)

3S= 3+2.32+3.33+...+101.3101

<=> 2S= 101.3101-(3100+399+398+....+3)-1            (1)

Ta có 

A=3100+399+...+3

<=> 3A=3101+3100+...+32

<=> A=\(\frac{3^{101^{ }}-3}{2}\)(2)

Thay (2) vào (1) ta có

S=        \(\frac{101.3^{101}-\frac{3^{101}-3}{2}-1}{2}\)

<=> S=\(\frac{3^{101}.201-1}{2}.\frac{1}{2}\)=\(\frac{3^{101}.201-1}{4}\)

Mik nghĩ vậy k bt đúng k

18 tháng 7 2017

Câu 1 :

\(\text{a) }B=\dfrac{4^6\cdot9^5+6^9\cdot120}{8^4\cdot3^{12}-6^{11}}\\ B=\dfrac{\left(2^2\right)^6\cdot\left(3^2\right)^5+\left(2\cdot3\right)^9\cdot\left(2^3\cdot3\cdot5\right)}{\left(2^3\right)^4\cdot3^{12}-6^{11}}\\ B=\dfrac{2^{12}\cdot3^{10}+2^9\cdot3^9\cdot2^3\cdot3\cdot5}{2^{12}\cdot3^{12}-\left(2\cdot3\right)^{11}}\\ B=\dfrac{2^{12}\cdot3^{10}+2^{12}\cdot3^{10}\cdot5}{2^{12}\cdot3^{12}-2^{11}\cdot3^{11}}\\ B=\dfrac{2^{12}\cdot3^{10}\left(1+5\right)}{2^{11}\cdot3^{11}\left(6-1\right)}\\ B=\dfrac{2\cdot6}{3\cdot5}\\ B=\dfrac{4}{5}\\ \)

\(\text{b) }C=\dfrac{5\cdot4^{15}\cdot9^9-4\cdot3^{20}\cdot8^9}{5\cdot2^9\cdot6^{19}-7\cdot2^{29}\cdot27^6}\\ C=\dfrac{5\cdot\left(2^2\right)^{15}\cdot\left(3^2\right)^9-2^2\cdot3^{20}\cdot\left(2^3\right)^9}{5\cdot2^9\cdot\left(2\cdot3\right)^{19}-7\cdot2^{29}\cdot\left(3^3\right)^6}\\ C=\dfrac{5\cdot2^{30}\cdot3^{18}-2^2\cdot3^{20}\cdot2^{27}}{5\cdot2^9\cdot2^{19}\cdot3^{19}-7\cdot2^{29}\cdot3^{18}}\\ C=\dfrac{5\cdot2^{30}\cdot3^{18}-2^{29}\cdot3^{20}}{5\cdot2^{28}\cdot3^{19}-7\cdot2^{29}\cdot3^{18}}\\ C=\dfrac{2^{29}\cdot3^{18}\left(10-9\right)}{2^{28}\cdot3^{18}\left(15-14\right)}\\ C=\dfrac{2^{29}\cdot3^{18}}{2^{28}\cdot3^{18}}\\ C=2\\ \)

\(\text{c) }D=\dfrac{49^{24}\cdot125^{10}\cdot2^8-5^{30}\cdot7^{49}\cdot4^5}{5^{29}\cdot16^2\cdot7^{48}}\\ D=\dfrac{\left(7^2\right)^{24}\cdot\left(5^3\right)^{10}\cdot2^8-5^{30}\cdot7^{49}\cdot\left(2^2\right)^5}{5^{29}\cdot\left(2^4\right)^2\cdot7^{48}}\\ D=\dfrac{7^{48}\cdot5^{30}\cdot2^8-5^{30}\cdot7^{49}\cdot2^{10}}{5^{29}\cdot2^8\cdot7^{48}}\\ D=\dfrac{7^{48}\cdot5^{30}\cdot2^8\left(1-28\right)}{5^{29}\cdot2^8\cdot7^{48}}\\ D=5\cdot\left(-27\right)\\ D=-135\)

18 tháng 7 2017

Câu 2 :

\(\text{a) }9^{x+1}-5\cdot3^{2x}=324\\ \Leftrightarrow9^x\cdot9-5\cdot9^x=81\cdot4\\ \Leftrightarrow9^x\left(9-5\right)=9^2\cdot4\\ \Leftrightarrow9^x\cdot4=9^2\cdot4\\ \Leftrightarrow9^x=9^2\\ \Leftrightarrow x=2\\ \text{Vậy }x=2\\ \)

Sorry . Mình chỉ biết đến đây thôi

6 tháng 9 2016

Ta có: 3x+2+4.3x+1=7.36

=> 3x + 1.(3 + 4) = 7.36

=> 3x + 1 . 7 = 7.36

=> 3+ 1 = 36

=> x + 1 = 6

=> x = 5

6 tháng 9 2016

3.3x+1 + 4.3x+1 = 7.36

3x+1(3 +4)        = 7.36

x+1 = 6

x = 5

14 tháng 7 2016

4) \(2.3^x+3^{x-1}=7.\left(3^2+2.6^2\right)\)

\(\Rightarrow2.3^x+3^{x-1}=567\)

\(\Rightarrow7.3^{x-1}=567\)

\(\Rightarrow3^{x-1}=567\div7\)

\(\Rightarrow3^{x-1}=81\)

\(\Rightarrow3^{x-1}=3^4\)

\(\Rightarrow x-1=4\)

\(\Rightarrow x=4+1\)

\(\Rightarrow x=5\)

Vậy \(x=5\)