Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : S = 2^1 + 2^2 + ... + 2^99 + 2^100
Suy ra S = ( 2^1 + 2^2 + 2^3 + 2^4 ) + ... + ( 2^97 + 2^98 + 2^99 + 2^100 )
Suy ra S = 1( 2^1 + 2^2 + 2^3 + 2^4 ) + ... + 2^96( 2^1 + 2^2 + 2^3 + 2^4 )
Suy ra S = 1.30 + ... + 2^96.30
Suy ra S = 30( 1 + ... +2^96 )
Vì 30 chia hết cho 10 nên 30( 1 + ... + 2^96 ) chia hết cho 10
Hay S chia hết cho 10
Suy ra S có tận cùng là 0
2100 = (24)25
=> 2100 = 1625
=> 2100 = ........6
vậy chữ số tận cùng của 2100 là 6
Đây nè
Ta có:
\(2^{100}=\left(2^{20}\right)^5\)
Mà \(2^{10}=1024\)(tức là có 2 chữ sốn tận cùng là 24)
Suy ra \(2^{20}\)có hai chữ số tận cùng là 76
Ta có tất cả các số có 2 chữ số tận cùng là 76 thì lũy thừa mấy cũng có 2 chữ số tận cùng là 76
Vậy \(2^{100}\)có hai chữ số tận cùng là 76
khó giải thích nhỉ kiểu C/M (1+1=2) này hơi mỏi
với n chẵn ta có 5^n=5^2k=25^k luôn có 2 số tận cùng với k>=1 là 25
với n lẻ ta có 5^n=5.^(2k+1)=5.5^(2k) =5.(25)^k {5.25 tận cùng 25
=> 5^n luôn có tận cùng là 25 với n>1
2^10 = 1024 => 2^10 đồng dư 24 modun 100
=> 2^50 đồng dư 24^5 theo modun 100
mà 24^5 =7962624 đồng dư 24 theo modun 100
=> 2^50 đồng dư 24 modun 100
=> 2^100 đồng dư 24^2 =576 đồng dư 76 modun 100
vậy 2 chữ số tận cùng của 2^100 là 76 :-)
Bạn nên sử dụng kiến thức về đồng dư thức. THường thì có một số mẹo là số tận cùng 00 01, 25 76 thì khi lũy thừa lên đều tận cùng như vậy. Hoặc cách khác bạn làm lần lượt lũy thừa dần lên như cách mình làm trên.
mình lớp 5 mong các bạn giúp đỡ
Ta có: a^2 + 1 chia hết cho 5
=> a^2 chia hết cho 4
=> a chia hết cho 2
=> a là số chẵn
=> a có chữ số tận cùng là 0; 2; 4; 6; 8
Vậy với a có chữ số tận cùng là: 0; 2; 4; 6; 8 thì (a^2+1) chia hết cho 5
1/
$A=2^2+2^3+2^4+....+2^{100}$
$2A=2^3+2^4+2^5+....+2^{101}$
$2A-A=2^{101}-2^2$
$A=2^{101}-4$
2.
$2^2\equiv -1\pmod 5$
$\Rightarrow 2^{2013}=(2^2)^{1006}.2\equiv (-1)^{1006}.2\equiv 2\pmod 5$
$\Rightarrow (2^{2013})^2\equiv 2^2\equiv 4\pmod 5$
$\Rightarrow (2^{2013})^2$ có tận cùng là 4 hoặc 9.
Mà $(2^{2013})^2$ chẵn nên $(2^{2013})^2$ tận cùng là 4.