K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Đặt a=2015/2017

\(A=1-a+a^2-a^3+...+a^{2018}\)

=>\(a\cdot A=a-a^2+a^3-a^4+...+a^{2019}\)

=>\(A\cdot\left(a+1\right)=a^{2019}+1\)

=>\(A=\dfrac{a^{2019}+1}{a+1}\)

2 tháng 9 2019

=> (x+2020)/5=(x+2020)/6=(x+2020)/3+(x+2020)/2

=>(x+2020)(1/5+1/6)=(x+2020)(1/3+1/2)

Với x+2020=0=>x=-2020

Với x+2020 khác 0=>1/5+1/6=1/3+1/2 ,vô lí 

Vậy x=-2020

12 tháng 5 2019

Đặt \(S=\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2018}}{\frac{2017}{1}+\frac{2016}{2}+...+\frac{1}{2017}}\)

 Biến đổi mẫu 

\(\frac{2017}{1}+\frac{2016}{2}+...+\frac{1}{2017}\)

\(=\left(2017+1\right)+\left(\frac{2016}{2}+1\right)+...+\left(\frac{1}{2017}+1\right)-2017\)

\(=2018+\frac{2018}{2}+...+\frac{2018}{2017}+\frac{2018}{2018}-2018\)

\(=2018.\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2018}\right)\)

\(\Rightarrow S=\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2018}}{2018.\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2018}\right)}=\frac{1}{2018}\)