Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Kho..................wa.....................troi.....................thi......................lanh.................ret.......................ai........................tich..........................ung.....................ho........................minh.....................cho....................do....................lanh
trước tiên bạn phải tính:
2013/1+2012/2+2011/3+.....+2/2012+1/2013
=1+2012/2)+(1+2011/3)+.....+(1+2/2012)+(1+1/2013) +1 {BƯỚC NÀY TÁCH 2013 RA LÀM 2013SỐ1 ĐỂ CÔNG VS CÁC THỪA SỐ CÒN LẠI}
=2014/2+2014/3+...+2014/2012+2014/2013+2014/2014
=2014.(1/2+1/3+....+1/2012+1/20131/2014
suy ra x=2014
Ta có:
\(1+\frac{1}{1+2}+\frac{1}{1+2+3}+...+\frac{1}{1+2+3+...+2012}=\frac{1}{1\cdot2:2}+\frac{1}{2\cdot3:2}+...+\frac{1}{2012\cdot2013:2}\)
\(=\frac{2}{1\cdot2}+\frac{2}{2\cdot3}+\frac{2}{3\cdot4}+...+\frac{2}{2012\cdot2013}=2\left[\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{2012\cdot2013}\right]\)
\(=2\left[\left[\frac{1}{1}-\frac{1}{2}\right]+\left[\frac{1}{2}-\frac{1}{3}\right]+\left[\frac{1}{3}-\frac{1}{4}\right]+...+\left[\frac{1}{2012}-\frac{1}{2013}\right]\right]\)
\(=2\left[1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2012}-\frac{1}{2013}\right]=2\left[1-\frac{1}{2013}\right]\)
\(=2\cdot\frac{2012}{2013}=\frac{4024}{2013}\)
Thế vào bài toán, ta có:
\(\frac{2\cdot2012}{\frac{4024}{2013}}=\frac{4024}{\frac{4024}{2013}}=2013\)
\(D=\frac{2.2012}{1+\frac{2}{2.\left(1+2\right)}+\frac{2}{2\left(1+2+3\right)}+\frac{2}{2\left(1+2+3+4\right)}+...+\frac{2}{2\left(1+2+..+2012\right)}}\)
\(=\frac{2.2012}{1+\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+...+\frac{2}{4050156}}\)
\(=\frac{2.2012}{1+2\left(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{4050156}\right)}\)
\(=\frac{2.2012}{1+2\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{2012.2013}\right)}\)
\(=\frac{2.2012}{1+2.\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{2012}-\frac{1}{2013}\right)}\)
\(=\frac{2.2012}{1+2.\left(\frac{1}{2}-\frac{1}{2013}\right)}\)
\(=\frac{2.2012}{1+\frac{2.2011}{2.2013}}\)
\(=\frac{2.2012}{1+\frac{2011}{2013}}\)
\(=\frac{4024}{\frac{4024}{2013}}\)
\(=2013\)
Vậy D=2013
\(\dfrac{1-1}{1+2}+\dfrac{1-1}{1+2+3}+\dfrac{1-1}{1+2+3+4}+...+\dfrac{1-1}{1+2+3+...+2012}\)
\(=\dfrac{0}{1+2}+\dfrac{0}{1+2+3}+\dfrac{0}{1+2+3+4}+...+\dfrac{0}{1+2+3+4+...+2012}\)
\(=0+0+0+...+0\)
\(=0\)
---
Bài này dễ mà bạn. Cơ mà hình như bạn ghi sai đề, sao khúc đầu thì nhân mà khúc cuối lại cộng thế?
Bản chất cả nhân cả cộng