Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left[\left(0,5\right)^3\right]^x=\dfrac{1}{64}\\ \Leftrightarrow\left[\left(\dfrac{1}{2}\right)^3\right]^x=\dfrac{1}{64}\\ \Leftrightarrow\left(\dfrac{1}{8}\right)^x=\dfrac{1}{64}=\left(\dfrac{1}{8}\right)^2\\ Vậy:x=2\\ \rightarrow S=\left\{2\right\}\)
Ta có: \(\left[\left(-0.5\right)^3\right]^x=\dfrac{1}{64}\)
\(\Leftrightarrow\left(-\dfrac{1}{2}\right)^{3x}=\dfrac{1}{64}\)
\(\Leftrightarrow3x=6\)
hay x=2
[(-0.5)3]x = \(\frac{1}{64}\)
<=> \(\left(-\frac{1}{8}\right)^x\)= \(\left(-\frac{1}{8}\right)^2\)
<=> x = 2
\(\left[-\frac{1}{8}\right]^x=\frac{1}{64}\)
\(\frac{-1^x}{8^x}=\frac{1}{8^2}\)
\(\Rightarrow x=2\)
Vậy,........
\(a,\Rightarrow\left[{}\begin{matrix}5x+1=\dfrac{6}{7}\\5x+1=-\dfrac{6}{7}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}5x=\dfrac{1}{7}\\5x=-\dfrac{13}{7}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{1}{35}\\x=-\dfrac{13}{35}\end{matrix}\right.\\ b,\Rightarrow\left(-\dfrac{1}{8}\right)^x=\dfrac{1}{64}=\left(-\dfrac{1}{8}\right)^2\Rightarrow x=2\\ c,\Rightarrow\left(x-2\right)\left(2x+3\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=2\\x=-\dfrac{3}{2}\end{matrix}\right.\\ d,\Rightarrow\left(x+1\right)^{x+10}-\left(x+1\right)^{x+4}=0\\ \Rightarrow\left(x+1\right)^{x+4}\left[\left(x+1\right)^6-1\right]=0\\ \Rightarrow\left[{}\begin{matrix}x+1=0\\\left(x+1\right)^6=1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x+1=0\\x+1=1\\x+1=-1\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-1\\x=0\\x=-2\end{matrix}\right.\\ e,\Rightarrow\dfrac{3}{4}\sqrt{x}=\dfrac{5}{6}\left(x\ge0\right)\\ \Rightarrow\sqrt{x}=\dfrac{10}{9}\Rightarrow x=\dfrac{100}{81}\)
a. x2 - 1/4 = 0
x2 = 1/4
x2 = (1/2)2
=>x=1/2
b. x2 + 16 = 0
=>x2= -16 (vô lí)
=>ko tồn tại x tm~
c. x3 + 27 = 0
x3= -27
x3= (-3)3
=>x= -3
d. 2x3 - 16 = 0
x3 - 8 = 0
x3=8=23
=>x=2
e.[( - 0,5)3] = 1/64 =>????
h. (2n)2 = 64
22n=26
=>2n=6 => n=3
a) x = 1/2 hoặc x = -1/2
b) Ko có giá trị của x thỏa mãn
c) x = -3
d) x = 2 hoặc x = -2
e) Ko thấy x thì sao giải đc
h) n = 3
\(a,\left[\left(0,5\right)^3\right]^n=\frac{1}{64}\Rightarrow\left(0,125\right)^n=0,125^2\Rightarrow n=2\)
\(b,\frac{64}{\left(-2\right)^{n+1}}=4\Rightarrow\left(-2\right)^{n+1}=\frac{64}{4}\Rightarrow\left(-2\right)^{n+1}=16\Rightarrow\left(-2\right)^{n+1}=\left(-2\right)^4\)
\(\Rightarrow n+1=4\Rightarrow n=3\)
\(c,\left(\frac{1}{3}\right)^{n+1}=\frac{1}{81}\Rightarrow\left(\frac{1}{3}\right)^{n+1}=\left(\frac{1}{3}\right)^4\Rightarrow n+1=4\Rightarrow n=3\)
\(d,\left(\frac{3}{4}\right)^n.\frac{1}{2}=\frac{81}{512}\Rightarrow\left(\frac{3}{4}\right)^n=\frac{81}{512}:\frac{1}{2}=\frac{81}{256}\Rightarrow\left(\frac{3}{4}\right)^n=\left(\frac{3}{4}\right)^4\Rightarrow n=4\)
1/
$(x-1)^{x+10}=(x-1)^{x+8}$
$\Rightarrow (x-1)^{x+10}-(x-1)^{x+8}=0$
$\Rightarrow (x-1)^{x+8}(x^2-1)=0$
$\Rightarrow (x-1)^{x+8}=0$ hoặc $x^2-1=0$
Nếu $(x-1)^{x+8}=0\Rightarrow x-1=0\Rightarrow x=1$
Nếu $x^2-1=0\Rightarrow x^2=1=1^2=(-1)^2\Rightarrow x=1$ hoặc $x=-1$
Vậy $x=1$ hoặc $x=-1$
2/
$1^3+2^3+3^3+...+10^3=(x+1)^2$
Ta có công thức quen thuộc:
$1^3+2^3+...+n^3=(1+2+...+n)^2=\frac{[n(n+1)]^2}{4}$
Bạn có thể xem cm tại đây:
https://diendantoanhoc.org/topic/81694-t%C3%ADnh-t%E1%BB%95ng-s-13-23-33-n3/
Khi đó:
$1^3+2^3+...+10^3=(x+1)^2$
$\Rightarrow \frac{[10(10+1)]^2}{4}=(x+1)^2$
$\Rightarrow 3025=(x+1)^2$
$\Rightarrow x+1=55$ hoặc $x+1=-55$
$\Rightarrow x=54$ hoặc $x=-56$
\(\left[\left(-0,5\right)^3\right]^x=\dfrac{1}{64}\)
\(\Rightarrow\left(-\dfrac{1}{8}\right)^x=\left(-\dfrac{1}{8}\right)^2\)
\(\Rightarrow x=2\)
Ta có: \(\left[\left(-0.5\right)^3\right]^x=\dfrac{1}{64}\)
\(\Leftrightarrow\left(\dfrac{1}{2}\right)^{3x}=\dfrac{1}{64}\)
\(\Leftrightarrow3x=6\)
hay x=2