Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{4^6.9^5+6^9.120}{8^4.3^{12}-6^{11}}\)
\(\Leftrightarrow\frac{\left(2^2\right)^6.\left(3^2\right)^5+\left(2.3\right)^9.2^3.3.5}{\left(2^3\right)^4.3^{12}-\left(2.3\right)^{11}}\)
\(\Leftrightarrow\frac{2^{12}.3^{10}+2^9.3^9.2^3.3.5}{\left(2^3\right)^4.3^{12}-\left(2.3\right)^{11}}\)
\(\Leftrightarrow\frac{2^{12}.3^{10}+2^9.3^9.2^3.3.5}{2^{13}.3^{13}-2^{11}.3^{11}}\)
\(\Leftrightarrow\frac{2^{12}.3^{10}+2^{12}.3^{10}.5}{2^{12}.2^{12}-2^{11}.2^{11}}\)
\(\Leftrightarrow\frac{2^{12}.3^{10}.\left(1+5\right)}{6^{12}-6^{11}}\)
\(\Leftrightarrow\frac{2^{12}.3^{10}.6}{6^{11}.\left(6-1\right)}\)
\(\Leftrightarrow\frac{2^{12}.3^{10}.2.3}{6^{11}.\left(6-1\right)}\)
\(\Leftrightarrow\frac{2^{13}.3^{11}}{6^{11}.5}\)
\(\Leftrightarrow\frac{2^{11}.3^{11}.2^2}{6^{11}.5}\)
\(\Leftrightarrow\frac{6^{11}.4}{6^{11}.5}\Leftrightarrow\frac{4}{5}\)
\(\left(\frac{-3}{2x}+\frac{1}{4}\right):\frac{1}{6}=\frac{-3}{2}\)
\(\Rightarrow\frac{-3}{2x}+\frac{1}{4}=\frac{-3}{2}.\frac{1}{6}=-\frac{1}{4}\)
\(\Rightarrow\frac{-3}{2x}=-\frac{1}{4}-\frac{1}{4}=-\frac{1}{2}\)
\(\Rightarrow\frac{-3}{2x}=\frac{-3}{6}\)
\(\Rightarrow2x=6\)
\(\Rightarrow x=3\)
(-3/2x + 0,25) : 1/6 = -3/2
=> -3/2x + 0,25 = -3/2 . 1/6
=> -3/2x + 0,25 = -1/4
=> -3/2x = -1/4 - 0,25
=> -3,2x = -1/2
=> x = -1/2 : (-3/2)
=> x = 1/3
Ax1000 = 1830.11/5 - 672.22 -110.11/5 +1000
=(1830.11 -672.22.5-110.11+5000)/5
=(1830.11-6720.11-110.11+5000)/5=(1830.11-6830.11+5000)/5=(-5000.11+5000 )/5=-5000.10/5=-1000.10
vậy A = -10
= \(\frac{183}{100}\). \(\frac{11}{5}\)+ \(\frac{-168}{25}\). \(\frac{11}{5}\)- \(\frac{11}{100}\). \(\frac{11}{5}\)- ( - 1 )
=\(\frac{11}{5}\). ( \(\frac{183}{100}\)+ \(\frac{-168}{25}\)-\(\frac{11}{100}\)) + 1
=\(\frac{11}{5}\). ( - 5 ) +1
= - 11 + 1
= - 10
Ax1000=1830.11/5-672.22-110.11/5+1000
=(1830.11-672.22.5-110.11+5000)/5
=(1830.11-6720.11-110.11+5000)/5
=(1830.11-6830.11+5000)/5
=(-5000.11+5000)/5
=-5000.10/5
=1000.10
(-0,37+14/8).-11/10-(2,63-9/24).(-1,1)=77/80
ok bạn ơi