K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 6 2017

a) Giá trị gần đúng của h là : 10,5 cm

b) Giá trị của r là : 24 cm

a,\(6x^2+x-5=0\)

\(\Delta=b^2-4ac=1^2-4.6.\left(-5\right)=1+120=121\)

Vì \(\Delta>0\)nên pt có 2 nghiệm phân biệt 

\(x_1=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-1-\sqrt{121}}{2.6}=\frac{-1-11}{12}=\frac{-12}{12}=-1\)

\(x_2=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-1+\sqrt{121}}{2.6}=\frac{-1+11}{12}=\frac{10}{12}=\frac{5}{6}\)

Vậy \(S=\left\{-1;\frac{5}{6}\right\}\)

b, \(3x^2+4x+2=0\)

\(\Delta=b^2-4ac=4^2-4.3.2=16-24=-8\)

Vì \(\Delta< 0\)nên pt vô nghiệm 

c, \(x^2-8x+16=0\)

\(\Delta=b^2-4ac=\left(-8\right)^2-4.1.16=64-64=0\)

Vì \(\Delta=0\)nên pt có nghiệm kép 

\(x_1=x_2=\frac{-b}{2a}=\frac{-b'}{a}=\frac{8}{4}=\frac{4}{2}=2\)

8 tháng 4 2020

a) \(6x^2+x-5=0\)

Ta có : \(\Delta=1+4.6.5=121>0\)

\(\Rightarrow\sqrt{\Delta}=11\)

Phương trình có hai nghiệm :

\(x_1=\frac{-1+11}{2.6}=\frac{5}{6}\)

\(x_2=\frac{-1-11}{2.6}=-1\)

b) \(3x^2+4x+2=0\)

Ta có : \(\Delta=4^2-4.3.2=-8< 0\)

Vậy phương trình vô nghiệm

c) \(x^2-8x+16=0\)

Ta có : \(\Delta=\left(-8\right)^2-4.1.16=0\)

Phương trình có nghiệm kép :

\(x_1=x_2=\frac{8}{2}=-4\)

17 tháng 11 2017

Bài 2:

\(x^2-2x-3-\left(x+1\right)\sqrt{x^2+3}=0\)

\(\Leftrightarrow\left(x+1\right)\left(x-3\right)-\left(x+1\right)\sqrt{x^2+3}=0\)

\(\Leftrightarrow\left(x+1\right)\left(x-3-\sqrt{x^2+3}\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\x-3-\sqrt{x^2+3}=0\end{cases}}\)

TH1: \(x+1=0\Leftrightarrow x=-1\) 

TH2:  \(x-3-\sqrt{x^2+3}=0\Leftrightarrow x-3=\sqrt{x^2+3}\)

\(\Leftrightarrow\hept{\begin{cases}x\ge3\\x^2+3=x^2-6x+9\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge3\\x=1\end{cases}}\left(l\right)\)

Vậy phương trình có nghiệm x =  -1.