Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đổi 30 phút = 0,5 giờ
Quãng sông từ A đến B dài là:
\(x\) \(\times\) 0,5 + y \(\times\) 1 = 0,5\(x\) + y (km)
Kết luận Quãng đường từ A đên B dài: 0,5\(x\) + y (km)
Lời giải:
Áp dụng tính chất tổng 3 góc trong 1 tam giác bằng $180^0$
Hình 1: Hình không rõ ràng. Bạn xem lại.
Hình 2: $x+x+120^0=180^0$
$2x+120^0=180^0$
$2x=60^0$
$x=60^0:2=30^0$
Hình 3:
$2y+y+90^0=180^0$
$3y=180^0-90^0=90^0$
$y=90^0:3=30^0$
\(5x=3y\Rightarrow x=\dfrac{3y}{5}\)
Thay \(x=\dfrac{3y}{5}\) vào biểu thức \(x^2-y^2=-4\) ta có:
\(\left(\dfrac{3y}{5}\right)^2-y^2=-4\)
\(\dfrac{9y^2}{25}-y^2=-4\)
\(-\dfrac{16}{25}y^2=-4\)
\(y^2=-\dfrac{4}{\dfrac{-16}{25}}\)
\(y^2=\dfrac{25}{4}\)
\(\Rightarrow y=-\dfrac{5}{2};y=\dfrac{5}{2}\)
*) \(y=-\dfrac{5}{2}\Rightarrow x=\dfrac{3.\left(-\dfrac{5}{2}\right)}{5}=-\dfrac{3}{2}\)
*) \(y=\dfrac{5}{2}\Rightarrow x=\dfrac{3.\dfrac{5}{2}}{5}=\dfrac{3}{2}\)
Vậy ta được các cặp giá trị \(\left(x;y\right)\) thỏa mãn:
\(\left(-\dfrac{3}{2};-\dfrac{5}{2}\right);\left(\dfrac{3}{2};\dfrac{5}{2}\right)\)
Lời giải:
Áp dụng tính chất tổng 3 góc trong một tam giác bằng $180^0$
a.
$x=180^0-80^0-45^0=55^0$
b.
$y=180^0-30^0-90^0=60^0$
c.
$z=180^0-30^0-25^0=125^0$
Bài 4:
a: \(\dfrac{9}{25}=\dfrac{18}{50}>\dfrac{17}{50}\)
=>Số học sinh đi xe buýt nhiều hơn đi xe đạp
b: Số học sinh đi bằng các phương tiện khác chiếm:
\(1-\dfrac{17}{50}-\dfrac{18}{50}=\dfrac{15}{50}\)
Vì \(\dfrac{15}{50}< \dfrac{17}{50}< \dfrac{18}{50}=\dfrac{9}{25}\)
nên số học sinh đi xe buýt là nhiều nhất
Bài 2:
a: \(\dfrac{5}{7}-\dfrac{3}{7}x=1\)
=>\(\dfrac{3}{7}x=\dfrac{5}{7}-1=-\dfrac{2}{7}\)
=>3x=-2
=>\(x=-\dfrac{2}{3}\)
b: \(x-\dfrac{-3}{4}=-\dfrac{14}{25}\)
=>\(x+\dfrac{3}{4}=-\dfrac{14}{25}\)
=>\(x=-\dfrac{14}{25}-\dfrac{3}{4}=\dfrac{-56}{100}-\dfrac{75}{100}=-\dfrac{131}{100}\)
c: \(\dfrac{5}{-20}-x=\dfrac{-7}{5}\)
=>\(x+\dfrac{1}{4}=\dfrac{7}{5}\)
=>\(x=\dfrac{7}{5}-\dfrac{1}{4}=\dfrac{28}{20}-\dfrac{5}{20}=\dfrac{23}{20}\)
d: \(x+\dfrac{3}{4}=\dfrac{36}{144}\cdot\dfrac{-12}{9}\)
=>\(x+\dfrac{3}{4}=\dfrac{1}{4}\cdot\dfrac{-4}{3}=-\dfrac{1}{3}\)
=>\(x=-\dfrac{1}{3}-\dfrac{3}{4}=\dfrac{-13}{12}\)
e: \(\dfrac{8}{23}\cdot\dfrac{46}{24}=\dfrac{1}{3}\cdot x\)
=>\(\dfrac{x}{3}=\dfrac{8}{24}\cdot\dfrac{46}{23}=\dfrac{2}{3}\)
=>x=2
f: \(\dfrac{1}{5}:x=\dfrac{1}{5}-\dfrac{1}{7}\)
=>\(\dfrac{1}{5}:x=\dfrac{2}{35}\)
=>\(x=\dfrac{1}{5}:\dfrac{2}{35}=\dfrac{1}{5}\cdot\dfrac{35}{2}=\dfrac{35}{10}=3,5\)
g: \(\dfrac{4}{9}-\left(x-\dfrac{1}{2}\right)^2=\dfrac{1}{3}\)
=>\(\left(x-\dfrac{1}{2}\right)^2=\dfrac{4}{9}-\dfrac{1}{3}=\dfrac{1}{9}\)
=>\(\left[{}\begin{matrix}x-\dfrac{1}{2}=\dfrac{1}{3}\\x-\dfrac{1}{2}=-\dfrac{1}{3}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{6}\\x=\dfrac{1}{2}-\dfrac{1}{3}=\dfrac{1}{6}\end{matrix}\right.\)
h: \(3,2x-\left(\dfrac{4}{5}+\dfrac{2}{3}\right):3\dfrac{2}{3}=\dfrac{7}{20}\)
=>\(3,2x-\dfrac{22}{15}:\dfrac{11}{3}=\dfrac{7}{20}\)
=>\(3,2x-\dfrac{22}{15}\cdot\dfrac{3}{11}=\dfrac{7}{20}\)
=>\(3,2x-\dfrac{2}{5}=\dfrac{7}{20}\)
=>\(3,2x=\dfrac{7}{20}+\dfrac{2}{5}=\dfrac{7}{20}+\dfrac{8}{20}=\dfrac{15}{20}=0,75\)
=>x=0,75:3,2=15/64
i: \(\left(4\dfrac{1}{2}-2x\right)\cdot1\dfrac{4}{61}=6\dfrac{1}{2}\)
=>\(\left(\dfrac{9}{2}-2x\right)\cdot\dfrac{65}{61}=\dfrac{13}{2}\)
=>\(\dfrac{9}{2}-2x=\dfrac{13}{2}:\dfrac{65}{61}=\dfrac{13}{2}\cdot\dfrac{61}{65}=\dfrac{61}{10}\)
=>2x=4,5-6,1=-1,6
=>x=-0,8