Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(5x=3y\Rightarrow x=\dfrac{3y}{5}\)
Thay \(x=\dfrac{3y}{5}\) vào biểu thức \(x^2-y^2=-4\) ta có:
\(\left(\dfrac{3y}{5}\right)^2-y^2=-4\)
\(\dfrac{9y^2}{25}-y^2=-4\)
\(-\dfrac{16}{25}y^2=-4\)
\(y^2=-\dfrac{4}{\dfrac{-16}{25}}\)
\(y^2=\dfrac{25}{4}\)
\(\Rightarrow y=-\dfrac{5}{2};y=\dfrac{5}{2}\)
*) \(y=-\dfrac{5}{2}\Rightarrow x=\dfrac{3.\left(-\dfrac{5}{2}\right)}{5}=-\dfrac{3}{2}\)
*) \(y=\dfrac{5}{2}\Rightarrow x=\dfrac{3.\dfrac{5}{2}}{5}=\dfrac{3}{2}\)
Vậy ta được các cặp giá trị \(\left(x;y\right)\) thỏa mãn:
\(\left(-\dfrac{3}{2};-\dfrac{5}{2}\right);\left(\dfrac{3}{2};\dfrac{5}{2}\right)\)
Lời giải:
Áp dụng tính chất tổng 3 góc trong một tam giác bằng $180^0$
a.
$x=180^0-80^0-45^0=55^0$
b.
$y=180^0-30^0-90^0=60^0$
c.
$z=180^0-30^0-25^0=125^0$
Đổi 30 phút = 0,5 giờ
Quãng sông từ A đến B dài là:
\(x\) \(\times\) 0,5 + y \(\times\) 1 = 0,5\(x\) + y (km)
Kết luận Quãng đường từ A đên B dài: 0,5\(x\) + y (km)
Lời giải:
Áp dụng tính chất tổng 3 góc trong 1 tam giác bằng $180^0$
Hình 1: Hình không rõ ràng. Bạn xem lại.
Hình 2: $x+x+120^0=180^0$
$2x+120^0=180^0$
$2x=60^0$
$x=60^0:2=30^0$
Hình 3:
$2y+y+90^0=180^0$
$3y=180^0-90^0=90^0$
$y=90^0:3=30^0$
a) \(1,2-3^2+7,5:3\)
\(=1,2-9+2,5\)
\(=-7,8+2,5=-5,3\)
b) \(\dfrac{9^{11}\cdot25^6}{15^6\cdot27^5}=\dfrac{\left(3^2\right)^{11}\cdot\left(5^2\right)^6}{\left(3\cdot5\right)^6\cdot\left(3^3\right)^5}=\dfrac{3^{22}\cdot5^{12}}{3^6\cdot5^6\cdot3^{15}}\)
\(=\dfrac{3^{22}\cdot5^{12}}{3^{21}\cdot5^6}=3\cdot5^6=46875\)
c) \(\left|\dfrac{3}{8}-\dfrac{9}{16}\right|-\sqrt{\dfrac{25}{64}}+\left(\dfrac{7}{16}\right)^5:\left(\dfrac{7}{16}\right)^4\)
\(=\left|\dfrac{6}{16}-\dfrac{9}{16}\right|-\sqrt{\dfrac{5^2}{8^2}}+\dfrac{7}{16}\)
\(=\left|-\dfrac{3}{16}\right|-\sqrt{\left(\dfrac{5}{8}\right)^2}+\dfrac{7}{16}\)
\(=\dfrac{3}{16}-\dfrac{5}{8}+\dfrac{7}{16}\)
\(=\dfrac{3}{16}-\dfrac{10}{16}+\dfrac{7}{16}\)
\(=\dfrac{3-10+7}{16}=0\)
d) \(\sqrt{\left(\dfrac{-1}{4}\right)^2}-3.\sqrt{\dfrac{25}{81}}+\left|\dfrac{7}{4}-\dfrac{1}{3}\right|\)
\(=\left|\dfrac{-1}{4}\right|-3.\sqrt{\left(\dfrac{5}{9}\right)^2}+\left|\dfrac{17}{12}\right|\\ =\dfrac{1}{4}-3.\left|\dfrac{5}{9}\right|+\dfrac{17}{12}\\ =\dfrac{1}{4}-3.\dfrac{5}{9}+\dfrac{17}{12}\\ =\dfrac{1}{4}-\dfrac{15}{9}+\dfrac{17}{12}\\ =-\dfrac{17}{12}+\dfrac{17}{12}=0\)