Cho x=2017 tính:
A=x^2017-2616x^2016-2016x^2015-.....-2016x+1
tra lời đầy đủ nha
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo đề bài ta có
\(f\left(x\right)=x^{2017}-2016.x^{2016}+2016.x^{2015}-...+2016.x-1\)
Với \(f\left(2015\right)\)thì \(x=2015,x+1=2016\)
\(\Rightarrow f\left(x\right)=x^{2017}-\left(x+1\right).x^{2016}+\left(x+1\right).x^{2015}-...+\left(x+1\right).x-1\)
\(\Rightarrow f\left(x\right)=x^{2017}-x^{2017}-x^{2016}+x^{2016}+x^{2015}-...+x^2+x-1\)
\(\Rightarrow f\left(x\right)=x-1\)
\(\Rightarrow f\left(2015\right)=2015-1=2014\)
Vậy f(2015)=2014
Tính giá trị của đa thức:
P(x) = x^{2017}-2016x^{2016}-2016x^{2015}-...--2016x^2^-2016x+1 tại x=2017
f(x)= x^2017 - 2016.x^2016 - 2016.x^2015 - ... - 2016x + 1
f(x)= x^2017 - (2017 - 1)x^2016 - (2017 - 1)x^2015 - ... - (2017 - 1)x +1
Với x=2017 ta có :
f(x)= x^2017 - (x - 1)x^2016 - (x-1)x^2015 - ... - (x - 1)x +1
f(x)= x^2017 - x^2017 +x^2016 - x^2016 +...+ x^2 - x^2 + x + 1
f(x)= x + 1
Thay x =2017 vào f(x) ta có :
f(2017) = 2017 +1 = 2018
x=2017 nên x-1=2016
\(A=x^{2017}-x^{2016}\left(x-1\right)-x^{2015}\left(x-1\right)-...-x\left(x-1\right)+1\)
\(=x^{2017}-x^{2017}+x^{2016}-x^{2016}+...-x^2+x+1\)
=x+1
=2017+1=2018
\(2016x^{2017}+2017y^{2016}=2015\left(1\right)\)
Có 2016x2017 là số chẵn, 2015 là số lẻ
=> 2017y2016 là số lẻ => y2016 là số lẻ
Đặt y1008 = 2k+1 \(\left(k\in Z\right)\)
Có y2016 = (2k+1)2 = 4k2+4k+1
=> 2017y2016 = 2017 (4k2+4k+1) = 2017.4.(k2+k)+2017
Lại có: \(2017.4.\left(k^2+k\right)\equiv0\left(mod4\right)\)
\(2017\equiv1\left(mod4\right)\)
suy ra: \(2017y^{2016}\equiv1\left(mod4\right)\)
mà \(2016x^{2017}\equiv0\left(mod4\right)\)
\(\Rightarrow2016x^{2017}+2017y^{2016}\equiv1\left(mod4\right)\left(2\right)\)
Lại có: \(2015\equiv3\left(mod4\right)\left(3\right)\)
Từ (1), (2) và (3) => PT vô nghiệm