K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
US
1
LP
4 tháng 1 2017
Theo đề bài ta có
\(f\left(x\right)=x^{2017}-2016.x^{2016}+2016.x^{2015}-...+2016.x-1\)
Với \(f\left(2015\right)\)thì \(x=2015,x+1=2016\)
\(\Rightarrow f\left(x\right)=x^{2017}-\left(x+1\right).x^{2016}+\left(x+1\right).x^{2015}-...+\left(x+1\right).x-1\)
\(\Rightarrow f\left(x\right)=x^{2017}-x^{2017}-x^{2016}+x^{2016}+x^{2015}-...+x^2+x-1\)
\(\Rightarrow f\left(x\right)=x-1\)
\(\Rightarrow f\left(2015\right)=2015-1=2014\)
Vậy f(2015)=2014
NC
0
LH
Tính giá trị của đa thức:
P(x) = x^{2017}-2016x^{2016}-2016x^{2015}-...--2016x^2^-2016x+1 tại x=2017
0
LV
1
24 tháng 4 2017
Đặt g(x)=f(x)-x-1 vì f(x) bậc 3 nên g(x) cũng bậc ba.
Ta có g(2015)=g(2016)=0
Nên g(x)=(x-2015)(x-2016)(ax+b)
suy ra f(x)=(x-2015)(x-2016)+x+1.
Từ điều kiện f(2014)-f(2017)=3 suy ra a=-1, b tùy ý
LT
0
f(x)= x^2017 - 2016.x^2016 - 2016.x^2015 - ... - 2016x + 1
f(x)= x^2017 - (2017 - 1)x^2016 - (2017 - 1)x^2015 - ... - (2017 - 1)x +1
Với x=2017 ta có :
f(x)= x^2017 - (x - 1)x^2016 - (x-1)x^2015 - ... - (x - 1)x +1
f(x)= x^2017 - x^2017 +x^2016 - x^2016 +...+ x^2 - x^2 + x + 1
f(x)= x + 1
Thay x =2017 vào f(x) ta có :
f(2017) = 2017 +1 = 2018