Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Vì |x−2015|= 1/2 nên x-2015=-1/2 hoặc x-2015=1/2
Nếu x-2015=-1/2 thì
x=2015+(-1)/2
x=4029/2
Nếu x-2015=1/2 thì
x=2015+1/2
x=4031/2
Vậy x=4029/2
hoặc x=4031/2
b)
Nếu x>2016 thì |x−2015|=x-2015 ,|x−2016|=x-2016
Khi đó: |x−2015|+|x−2016|=2017
=>x-2015+x-2016=2017
=>2x-4031=2017
=>2x=6048=>x=3024(thỏa mãn x>2016)
Nếu 2015<x<2016 thì |x−2015|=x-2015,
|x−2016|=2016-x. khi đó
|x−2015|+|x−2016|=2017
=>x-2015+2016-x=2017
=>1=2017(vô lý loại)
Nếu x>2015 thì |x−2015|=2015-x,|x−2016|=2016-x
Khi đó:
|x−2015|+|x−2016|=2017
=>2015-x+2016-x=2017
=>4031-2x=2017
=>2x=2014=>x=1007(thỏa mãn x<2015)
Vậy x=1007 hoặc x=3024
Tính giá trị của đa thức:
P(x) = x^{2017}-2016x^{2016}-2016x^{2015}-...--2016x^2^-2016x+1 tại x=2017
\(A=\left|x-2016\right|+\left|x-2017\right|+\left|x-2015\right|\)
\(A= \left|x-2016\right|+\left|2017-x\right|+\left|x-2015\right|\)
\(A\ge\left|x-2016\right|+\left|2017-x+x-2015\right|\)
\(A\ge\left|x-2016\right|+2\ge2\)
\("="\Leftrightarrow\hept{\begin{cases}x=2016\\2015\le x\le2017\end{cases}}\Leftrightarrow x=2016\)
3 + |x - 3|2016 = 22017 - 22016 - 22016 - ... - 22
3 + |x - 3|2016 = 22017 - (22016 + 22015 + ... + 22)
Đặt A = 22016 + 22015 + ... + 22
2A = 22017 + 22016 + ... + 23
2A - A = 22017 - 22
A = 22017 - 4
3 + |x - 3|2016 = 22017 - (22017 - 4) = 22017 - 22017 + 4 = 4
=> |x - 3|2016 = 4 - 3 = 1
=> |x - 3| = 1
\(\Rightarrow\orbr{\begin{cases}x-3=1\\x-3=-1\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x=4\\x=2\end{cases}}\)
a) \(a^2+b^2+c^2=ab+bc+ac\)
\(\Leftrightarrow2\left(a^2+b^2+c^2\right)=2\left(ab+bc+ac\right)\)
\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ac=0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(c-a\right)^2+\left(b-c\right)^2=0\)
Ta có : \(\hept{\begin{cases}\left(a-b\right)^2\ge0\\\left(c-a\right)^2\ge0\\\left(b-c\right)^2\ge0\end{cases}}\)
\(\Rightarrow\left(a-b\right)^2+\left(c-a\right)^2+\left(b-c\right)^2=0\)
\(\Leftrightarrow a=b=c\)
a. \(a^2+b^2+c^2=ab+bc+ca\)
\(\Leftrightarrow2a^2+2b^2+2c^2=2ab+2bc+2ca\)
\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2ab-2ca=0\)
\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}}\Leftrightarrow a=b=c\left(đpcm\right)\)
a: \(\left(x-2\right)^2+\left(x-y\right)^6+3\ge3\)
\(\Leftrightarrow A=\dfrac{2003}{\left(x-2\right)^2+\left(x-y\right)^6+3}\le\dfrac{2003}{3}\)
Dấu '=' xảy ra khi x=y=2
b: \(B=-\left(2x+\dfrac{1}{3}\right)^6+3\le3\forall x\)
Dấu '=' xảy ra khi x=-1/6
c: \(C=\dfrac{x^{2016}+2015+2}{x^{2016}+2015}=1+\dfrac{2}{x^{2016}+2015}\le\dfrac{2}{2015}+1=\dfrac{2017}{2015}\)
Dấu '=' xảy ra khi x=0