K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 12 2024

Ta có: \(S=1+2+2^2+...+2^{2022}\)

=>\(2S=2+2^2+2^3+...+2^{2023}\)

=>\(2S-S=2+2^2+...+2^{2023}-1-2-...-2^{2022}\)

=>\(S=2^{2023}-1\)

14 tháng 12 2024

Ta có:

S=1+2+22+23+...+22022

2S=(1.2)+(2.2)+(22.2)+(23.2)+...+(22022.2)

2S=2+22+23+24+...+22023

2S-S=(2+22+23+24+...+22023)-(1+2+22+23+...+22022)

S=22023-1 (triệt tiêu lẫn nhau, bước này mik giải thích nên bạn ko cần ghi cái dấu ngoặc đâu nha)

29 tháng 7 2023

a) \(S=1+2+2^2+2^3+...+2^{2022}=\dfrac{2^{2022+1}-1}{2-1}=2^{2023}-1\)

b) \(S=1+4+4^2+4^3+...+4^{2022}=\dfrac{4^{2022+1}-1}{4-1}=\dfrac{4^{2023}-1}{3}\)

29 tháng 7 2023

\(S=1+2+2^2+2^3+...+2^{2022}\\ 2S=2+2^2+2^3+2^4+...+2^{2023}\\ 2S-S=2+2^2+2^3+2^4+...+2^{2023}-1-2-2^2-2^3-...-2^{2022}\\ S=2^{2023}-1\\ S=4+4^2+4^3+...+4^{2022}\\ 4S=4^2+4^3+4^4+...+4^{2023}\\ 4S-S=4^2+4^3+4^4+...+4^{2023}-4-4^2-4^3-...-4^{2023}\\ 3S=4^{2023}-4\\ S=\dfrac{4^{2023}-4}{3}\)

 

AH
Akai Haruma
Giáo viên
14 tháng 10 2023

Lời giải:
$C=1-2+2^2-2^3+2^4-....+2^{2022}$

$2C=2-2^2+2^3-2^4+2^5-...+2^{2023}$

$\Rightarrow C+2C=(1-2+2^2-2^3+2^4-....+2^{2022})+(2-2^2+2^3-2^4+2^5-...+2^{2023})$

$\Rightarrow 3C=2^{2023}-1$

$\Rightarrow C=\frac{2^{2023}-1}{3}$

28 tháng 12 2021

giups mình với

 

28 tháng 12 2021

1+2+22+23+......22022>5.2221

16 tháng 8 2023

a) \(A=2+2^2+2^3+...+2^{2022}\)

\(2A=2.\left(2+2^2+2^3+...+2^{2022}\right)\)

\(2.A=2^2+2^3+2^4+...+2^{2023}\)

\(2A-A=\left(2^2+2^3+2^4+...+2^{2023}\right)-\left(2+2^2+2^3+...+2^{2022}\right)\)

\(A=2^{2023}-2\)

b) A + 2 = 2x

Hay \(\left(2^{2023}-2\right)+2=2^x\)

\(2^{2023}-2+2=2^x\)

\(2^{2023}=2^x\)

\(\Rightarrow x=2023\)

 

 

16 tháng 8 2023

   a, A = 21 + 22 + 23 + ...+ 22022

     2A =         22 + 23 +...+ 22022 + 22023

2A - A = 22023 - 21 

       A = 22023 - 2 

b,   A + 2  = 2\(^x\)  ⇒ 22023 - 2  + 2 = 2\(x\) 

                            22023               = 2\(^x\)

                           2023                 = \(x\) 

 

NV
28 tháng 12 2021

\(A=1+2+2^2+...+2^{2022}\)

\(\Rightarrow2A=2+2^2+...+2^{2023}\)

\(\Rightarrow2A-A=2^{2023}-1\)

\(\Rightarrow A=2^{2023}-1\)

\(\Rightarrow A< 2^{2023}=2^2.2^{2021}=4.2^{2021}< 5^{2021}\)

\(\Rightarrow A< B\)

30 tháng 10 2023

\(A=2+2^2+2^3+...+2^{2021}\)

=>\(2A=2^2+2^3+2^4+...+2^{2022}\)

=>\(2A-A=2^2+2^3+...+2^{2021}+2^{2022}-2-2^2-2^3-...-2^{2021}\)

=>\(A=2^{2022}-2\)

=>A<B

19 tháng 10 2023

\(A=2+2^2+2^3+...+2^{2020}+2^{2021}+2^{2022}\\=(2+2^2)+(2^3+2^4)+(2^5+2^6)+...+(2^{2021}+2^{2022})\\=2\cdot(1+2)+2^3\cdot(1+2)+2^5\cdot(1+2)+...+2^{2021}\cdot(1+2)\\=2\cdot3+2^3\cdot3+2^5\cdot3+...+2^{2021}\cdot3\\=3\cdot(2+2^3+2^5+..+2^{2021})\)

Vì \(3\cdot\left(2+2^3+2^5+...+2^{2021}\right)⋮3\)

nên \(A⋮3\).

\(Toru\)

19 tháng 10 2023

A=(2+22)+22(2+22)+...+22020(2+22)

A= 6.1+22.6+...+22020.6

A=6(1+22+...+22020) chia hết cho 3

vậy A chia hết cho 3

25 tháng 7 2023

Ta có \(A=\dfrac{1}{2}+\dfrac{2}{2^2}+\dfrac{3}{2^3}+...+\dfrac{2022}{2^{2022}}+\dfrac{2023}{2^{2023}}\)

\(2A=1+\dfrac{2}{2}+\dfrac{3}{2^2}+...+\dfrac{2022}{2^{2021}}+\dfrac{2023}{2^{2022}}\)

\(2A-A=\left(1+\dfrac{2}{2}+\dfrac{3}{2^2}+...+\dfrac{2022}{2^{2021}}+\dfrac{2023}{2^{2022}}\right)-\left(\dfrac{1}{2}+\dfrac{2}{2^2}+\dfrac{3}{2^3}+...+\dfrac{2022}{2^{2022}}+\dfrac{2023}{2^{2023}}\right)\)\(A=1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2021}}+\dfrac{1}{2^{2022}}\) - \(\dfrac{2023}{2^{2023}}\)

Đặt B = \(1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2021}}+\dfrac{1}{2^{2022}}\)

2B = \(2+1+\dfrac{1}{2}+...+\dfrac{1}{2^{2020}}+\dfrac{1}{2^{2021}}\)

2B - B = \(\left(2+1+\dfrac{1}{2}+...+\dfrac{1}{2^{2020}}+\dfrac{1}{2^{2021}}\right)-\left(1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2021}}+\dfrac{1}{2^{2022}}\right)\)B = 2 - \(\dfrac{1}{2^{2022}}\)

Suy ra  A = 2 - \(\dfrac{1}{2^{2022}}\) - \(\dfrac{2023}{2^{2023}}\) < 2

Vậy A < 2

25 tháng 7 2023

\(A=\dfrac{1}{2}+\dfrac{2}{2^{2}}+\dfrac{3}{2^{3}}+...+\dfrac{2022}{2^{2022}}+\dfrac{2023}{2^{2023}}\)

\(2A=1+\dfrac22+\dfrac3{2^2}\ +\,.\!.\!.+\ \dfrac{2022}{2^{2021}}+\dfrac{2023}{2^{2022}}\\2A-A=\left(1+\dfrac22+\dfrac3{2^2}\ +\,.\!.\!.+\ \dfrac{2022}{2^{2021}}+\dfrac{2023}{2^{2022}}\right)-\left(\dfrac12+\dfrac2{2^2}+\dfrac3{2^3}\ +\,.\!.\!.+\ \dfrac{2022}{2^{2022}}+\dfrac{2023}{2^{2023}}\right)\\A=1+\dfrac12+\dfrac1{2^3}\ +\,.\!.\!.+\ \dfrac1{2^{2021}}+\dfrac1{2^{2022}}-\dfrac{2023}{2^{2023}}\\2\left(A+\dfrac{2023}{2^{2023}}\right)=2+1+\dfrac12+\dfrac1{2^2}\ +\,.\!.\!.+\ \dfrac1{2^{2020}}+\dfrac1{2^{2021}}\\A+\dfrac{2023}{2^{2023}}=2-\dfrac1{2^{2022}}\\A=2-\dfrac1{2^{2022}}+\dfrac{2023}{2^{2023}}<2\)

 

 

26 tháng 12 2022

a) A = 2⁰ + 2¹ + 2² + 2³ + ... + 2²⁰²²

2A = 2 + 2² + 2³ + 2⁴ + ... + 2²⁰²³

A = 2A - A

= (2 + 2² + 2³ + 2⁴ + ... + 2²⁰²³) - (2⁰ + 2¹ + 2² + 2³ + ... + 2²⁰²²)

= 2²⁰²³ - 2⁰

= 2²⁰²³ - 1

Vậy A = B

b) A = 2021 . 2023

= (2022 - 1).(2022 + 1)

= 2022.(2022 + 1) - 2022 - 1

= 2022² + 2022 - 2022 - 1

= 2022² - 1 < 2022²

Vậy A < B