Tìm số tự nhiên n để n2 + 4n là SNT
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
11:
n^3-n^2+2n+7 chia hết cho n^2+1
=>n^3+n-n^2-1+n+8 chia hết cho n^2+1
=>n+8 chia hết cho n^2+1
=>(n+8)(n-8) chia hết cho n^2+1
=>n^2-64 chia hết cho n^2+1
=>n^2+1-65 chia hết cho n^2+1
=>n^2+1 thuộc Ư(65)
=>n^2+1 thuộc {1;5;13;65}
=>n^2 thuộc {0;4;12;64}
mà n là số tự nhiên
nên n thuộc {0;2;8}
Thử lại, ta sẽ thấy n=8 không thỏa mãn
=>\(n\in\left\{0;2\right\}\)
a: \(\Leftrightarrow2n-1\in\left\{1;-1;3;-3\right\}\)
hay \(n\in\left\{1;0;2\right\}\)
a: \(\Leftrightarrow2n-1\in\left\{-1;1;3\right\}\)
hay \(n\in\left\{0;1;2\right\}\)
Để 4n+7:4n+2 là số tự nhiên thì :
\(\hept{\begin{cases}4n+7⋮4n+2\\4n+2⋮4n+2\end{cases}}\)
=> 4n+7-4n+2\(⋮\)4n+2
(=) 5\(⋮\)4n+2
=> 4n+2\(\in\)Ư(5)
(=) 4n+2\(\in\){-5,-1,1,5}
(=) 4n\(\in\){-3,1,3,9}
(=) n \(\in\left\{-\frac{3}{4},\frac{1}{4},\frac{3}{4},\frac{9}{4}\right\}\)
mà n là số tự nhiên => không tồn tại n
ta co
\(\hept{\begin{cases}4n+7⋮4n+2\\4n+2⋮4n+2\end{cases}}\)
\(\Rightarrow\)4n+7 - 4n+ 2\(⋮\)4n+2
5 \(⋮\)4n+2
Vì \(n\in N\Leftrightarrow n+8\ge8\)
\(\dfrac{n^2+8}{n+8}=\dfrac{n^2-64+56}{n+8}=n-8+\dfrac{56}{n+8}\in Z\\ \Leftrightarrow n+8\inƯ\left(56\right)=\left\{8;14;28;56\right\}\\ \Leftrightarrow n\in\left\{0;6;20;48\right\}\)
==> 4n + 7 +4n +7 +61/4n + 7
= 61/4n + 7
==> 4n+1e Ư(61)
Uc(61) = { -1; 1; 61; -61}
vậy n là -1.5;-2;13.5;17.
==> 4n + 7 +4n +7 +61/4n + 7
= 2/1 + 61/4n + 7
==> 4n+1e Ư(61)
Uc(61) = { -1; 1; 61; -61}
vậy n là -1.5;-2;13.5;17.
mình nhần nha
Lời giải:
Xét modun $3$ của $n$ thì ta dễ dàng thấy $n^2+n+2$ không chia hết cho $3$ với mọi $n$. Do đó $n^2+n+2$ nếu thỏa mãn đề thì chỉ có thể là tích 2 số tự nhiên liên tiếp (nếu từ 3 số tự nhiên liên tiếp thì sẽ chia hết cho 3)
Đặt $n^2+n+2=a(a+1)$ với $a\in\mathbb{N}$
$\Leftrightarrow 4n^2+4n+8=4a^2+4a$
$\Leftrightarrow (2n+1)^2+8=(2a+1)^2$
$\Leftrightarrow 8=(2a+1)^2-(2n+1)^2=(2a-2n)(2a+2n+2)$
$\Leftrightarrow 2=(a-n)(a+n+1)$
Hiển nhiên $a+n+1> a-n$ và $a+n+1>0$ với mọi $a,n\in\mathbb{N}$ nên:
$a+n+1=2; a-n=1$
$\Rightarrow n=0$ (tm)