K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 12 2021

Vì \(n\in N\Leftrightarrow n+8\ge8\)

\(\dfrac{n^2+8}{n+8}=\dfrac{n^2-64+56}{n+8}=n-8+\dfrac{56}{n+8}\in Z\\ \Leftrightarrow n+8\inƯ\left(56\right)=\left\{8;14;28;56\right\}\\ \Leftrightarrow n\in\left\{0;6;20;48\right\}\)

11 tháng 9 2021

a. tìm a là số tự nhiên để 17a+8 là số chính phương

Giả sử \(17a+8=x^2\Rightarrow17a-17+25=x^2\Rightarrow17\left(a-1\right)=x^2-25\Rightarrow17\left(a-1\right)=\left(x-5\right)\left(x+5\right)\)

\(\Rightarrow\left(x-5\right);\left(x+5\right)⋮17\)

\(\Rightarrow x=17n\pm5\Rightarrow a=17n^2\pm10n+1\)

Ta có:

( n- 8 )2 + 36

= n4 - 16n2 + 64 + 36

= n4 + 20n2 + 100 - 36n2

= ( n2 + 10 )2 - ( 6n )2

= ( n2 + 10 + 6n )(n2 + 10 - 6n)

Mà để (n2 + 10 + 6n)(n2 + 10 - 6n) là số nguyên tố thì n2 + 10 + 6n = 1 hoặc n2 + 10 - 6n = 1

Mặt khác ta có: n2 + 10 - 6n < n2 + 10 + 6n \(\Rightarrow\)n2 + 10 - 6n = 1 ( n \(\in\)N )

n2 + 9 - 6n = 0 hay ( n - 3 )2 = 0 \(\Rightarrow\)n = 3

Vậy với n = 3 thì ( n2 - 8 ) là số nguyên tố

Mình làm đúng đó

Đảm bảo 100%  

nha

16 tháng 8 2019

a) \(P=n^3-n^2-n-2\)

\(P=n^3-2n^2+n^2-2n+n-2\)

\(P=n^2\left(n-2\right)+n\left(n-2\right)+\left(n-2\right)\)

\(P=\left(n-2\right)\left(n^2+n+1\right)\)

16 tháng 8 2019

Lỡ tay ấn nhầm nút gửi, làm tiếp 

Ta có \(P=\left(n-2\right)\left(n^2+n+1\right)\)

Để P nguyên tố thì P có một thừa số bằng 1

+) TH1: \(n-2=1\Leftrightarrow n=3\)

Khi đó \(P=13\)( thỏa )

+) TH2: \(n^2+n+1=1\Leftrightarrow n\left(n+1\right)=0\Leftrightarrow\orbr{\begin{cases}n=0\\n=-1\end{cases}}\)

Với \(n=0\Leftrightarrow P=-2\)( loại )

Với \(n=-1\Leftrightarrow P=-3\)( loại )

Vậy \(n=3\)thỏa mãn.

Bài 1: 

Để \(\dfrac{n^2+7}{n+7}\) là số tự nhiên thì \(\left\{{}\begin{matrix}n^2+7⋮n+7\\n>-7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}n^2-49+56⋮n+7\\n>-7\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}n+7\in\left\{1;-1;2;-2;4;-4;7;-7;8;-8;14;-14;28;-28;56;-56\right\}\\n>-7\end{matrix}\right.\)

\(\Leftrightarrow n\in\left\{-6;-5;-3;0;1;7;21;49\right\}\)

13 tháng 7 2018

1/ Câu hỏi của Lý Khánh Linh - Toán lớp 8 - Học toán với OnlineMath

2/

Đặt \(n^2+4n+2013=m^2\left(m\in N\right)\)

\(\Rightarrow\left(n^2+4n+4\right)+2009=m^2\)

\(\Rightarrow m^2-\left(n+2\right)^2=2009\)

\(\Rightarrow\left(m+n+2\right)\left(m-n-2\right)=2009\)

Vì \(m,n\in N\Rightarrow m+n+2;m-n-2\in N\Rightarrow m+n+2>m-n-2\)

\(\Rightarrow\hept{\begin{cases}m+n+2=2009\\m-n-2=1\end{cases}\Rightarrow\hept{\begin{cases}m+n=2007\\m-n=3\end{cases}}\Rightarrow\hept{\begin{cases}m=1005\\n=1002\end{cases}}}\)

Vậy n = 1002

13 tháng 7 2018

các bạn thay n2 ở câu 1 = n3 cho mk nhé

13 tháng 10 2016

Có: n3-n+2=(n3-n)+2=n(n2-1)+2=n(n-1)(n+1)+2

Dễ thấy (n-1)n(n+1) là tích 3 STN liên tiếp nên chia hết cho 3

=>(n-1)n(n+1)+2 chia 3 dư 2

=>n3-n+2 chia 3 dư 2 nên không là SCP
 

6 tháng 5 2020

Đặt \(n^2+2004=a^2\)

\(\Leftrightarrow a^2-n^2=2004\)

\(\Leftrightarrow\left(a-n\right)\left(a+n\right)=2004\)

Để ý rằng \(2004=2^2\cdot3\cdot167\)

Nên cậu cứ xét ước nha !